氮化物材料中的氮掺杂是改善材料特性的一种有希望的方法。的确,GESBTE相位变化合金中的N掺杂已证明可以极大地提高其无定形相的热稳定性,这是确保最终相变存储设备的数据保留所必需的。尽管建议这种合金中的N掺杂导致GE-N键的优先形成,但有关键的进一步问题,尤其是SB-N和TE-N,并且结构排列尚不清楚。在本文中,我们介绍了使用大量的N含量从0到50 at at 50 at,我们介绍了沉积的元素GE,SB和TE系统及其氮化物(即Gen,SBN和10合金)的研究。%。通过傅立叶变换红外和拉曼光谱法研究了AS沉积合金。我们确定与GE-N,SB-N和TE-N键形成相关的主动振动模式,强调了N融合对这些元素系统结构的影响。我们进一步定性地将Gen,SBN和十个实验光谱与相关理想氮化物结构的“从头开始”进行了比较。最后,对氮化元素层的分析扩展到N掺杂的GESBTE合金,从而在记忆技术中采用的此类三元系统中对氮键有更深入的了解。
摘要:基于流的架构最近被证明是用于在晶格上正规的有效字符串理论的数值模拟的有效工具,否则无法通过标准的Monte Carlo方法进行有效采样。在这项工作中,我们使用随机化流动,这是一种基于非平衡蒙特卡洛模拟的最先进的深度学习结构,以研究不同的有效弦模型。通过与Nambu-Goto模型的精确结果进行比较测试了这种方法的可靠性后,我们讨论了可观察到的结果,这些结果在分析方面具有挑战性,例如字符串的宽度和通量密度的形状。此外,我们对有效的弦乐理论进行了一项新的数值研究,其术语超出了Nambu-Got的作用,其中包括对它们对晶格量规理论的重要性的更广泛讨论。这些发现的组合可以定量描述不同晶格理论中限制机制的细节。这项工作中介绍的结果建立了基于流程的采样器对有效字符串理论的可靠性和可行性,并为更复杂模型的未来应用铺平了道路。
Sylvain Leblond,Pascal Fichet,LaumonierRémi,Sophie Billon,Paul Sardini等。开发用于拆卸应用的紧凑型Alpha和Beta摄像头。放射分析和核化学杂志,2022,331,pp.1075-1089。10.1007/S10967-021-08172-2。CEA-03939255
研究拓扑问题的主要动机是对拓扑顺序侵害环境的保护。在这项工作中,我们研究了与电磁环境耦合的拓扑发射器阵列。光子发射极耦合会在发射器之间产生非局部相互作用。使用周期性的边界条件为环境诱导的相互作用的所有范围,保留了发射极阵列固有的手性对称性。这种手性对称性保护了哈密顿量,并在林德布拉德操作员中诱导了平等。拓扑相变发生在与发射极阵列的能谱宽度相关的临界光子发射极耦合处。有趣的是,临界点非试图改变边缘状态的耗散速率,从而产生耗散性拓扑相变。在受保护的拓扑阶段,边缘状态从环境诱导的耗散范围内,用于弱光子发射极耦合。然而,强耦合可在发射极间距处的窗口带来稳健的无耗散状态。我们的工作显示了通过电磁环境操纵拓扑量子物质的潜力。
PCM 在潜热存储应用中的主要问题之一是提高热导率。已经进行了一些理论和实践研究来检查各种潜热存储系统的传热过程 [30]。目前,提高 PCM 热导率的主要方法是添加高热导率基质和化学改性添加剂的表面。这些包括表面和接枝功能团改性,以及添加多孔三维 (3D)、二维 (2D)、一维 (1D) 和零维 (0D) 结构添加剂。虽然改性和接枝功能团可以增加材料相容性并降低界面热阻,但改性的成功率较低且操作更复杂。加入导热基质可以形成导热链,从而减少声子散射并加快热量传输。另一方面,较高的添加剂质量含量将大大限制 PCM 的储热能力。因此,在选择提高 PCM 热导率的技术时,应考虑适当的添加量和实验条件。
图 2. 所提出的光控编码元件的设计和特性。a) 元原子编码元件的详细结构,在 SiO 2 基板上构建了 1 μm 厚的金方块和 1 μm 厚的 GeTe 方块图案。b) 编码元件两种状态的示意图:状态“0”表示 GeTe 的非晶态(绝缘态),状态“1”表示 GeTe 的晶体(导电)态。c) 和 d) 两种状态下编码元件的相应反射特性(c 幅度和 d 相位)。e) GeTe 层表面电阻随温度的变化(双探针测量),显示两种状态下的电特性相差六个数量级以上,并且冷却至室温时晶体状态具有非挥发性行为。 f) 有限元模拟 GeTe 层在具有不同能量密度的 35 纳秒长单脉冲紫外激光照射下的温度上升情况:单脉冲的通量为 90 mJ/cm 2,将使最初为非晶态的 GeTe 的温度升至其结晶温度 ( TC ) 以上,而随后的 190 mJ/cm 2 激光脉冲将使 GeTe 的温度升至其局部熔化温度 TM 以上,并将材料熔化淬火回非晶态。下图是拟议的 1 比特元原子的配置和示意图
𝑆𝑈(𝑁𝑁)仪表理论会经历反馈相变[1]。对这种过渡的非扰动研究从许多角度就可以对Yang-Mills理论的动力学有宝贵的见解。例如,一个人可以表征热力学可观察物的行为,这是颜色数量𝑁𝑁[2-4]的函数。早期宇宙中的一阶相变给引力波的烙印(例如参见参考文献。[5 - 8])。这打开了令人兴奋的可能性,即将重力波用作标准模型以外的物理探针的其他探针。除其他应用外,该程序与标准模型的扩展相关,该标准模型提出了HIGGS领域,新的Top-Quark合作伙伴或暗物质候选者的综合性质,例如基于𝑆𝑝(4)仪表理论的候选者,最近在数字上研究了,例如参考。[9 - 13]。要理解由给定理论中相变的引力波的强度,需要对相关可观察物的非扰动计算进行。在此贡献中,我们使用线性对数松弛(LLR)算法[14]在𝑆𝑈(3)Yang-Mills中报告了计算。对于该系统,最近在参考文献中提供了对潜热的高精度计算。[15]。使用与我们在这里讨论的类似方法的计算,但是在参考文献中讨论了靶标𝑆𝑈(4)。[16]。这项工作的一部分已在参考文献中报告。[17],我们将读者推荐给读者进行互补讨论。正在准备更广泛的出版物[18]。本工作的其余部分的结构如下。在教派中。2我们提供了晶格系统的描述,算法的博览会以及对数值实现的讨论。第3节报告了我们的数值发现。最后,我们的结论和未来工作的概述是在本节中给出的。4。
热质量是材料吸收、储存和释放热量的能力。砖或混凝土等热质量高的建筑材料更能抵抗温度波动。耐高温可减少机械系统的负荷、节省能源并提高居住者的舒适度。许多现代建筑都是用低热质量材料建造的,包括玻璃和钢材。增加热质量可减少能源使用和温室气体排放。
MID-IR波长范围(通常定义为跨度为3至13 µm)覆盖了各种大气气体的分子吸收区域。因此,MID-IR集成光子学,即将复杂和先进的光学功能整合到芯片上,这代表了开发基于光谱的气体检测的紧凑,成本效益的仪器的有希望的途径[1-6]。这些结构通常是用光刻技术制造的,这些技术限制了所得设备的可重新配置和可调性。通过在介电波导顶部涂上额外的层[7],证明了一些修剪后的后处理能力。走得更远,并为这些结构启用真正的后制成调音机制,一种有吸引力的方法是将它们与相变材料(PCM)相结合。这些材料可以可逆地在具有不同光学特性的无定形和晶体相之间切换。常规PCM的众所周知的例子是GE 2 SB 2 TE 5(GST)[8,9]和VO 2 [10-14]。GST由于其出色的特征而引起了强烈的关注,包括其两个阶段(∆ n> 2.5),低切换温度(〜180°C)之间的近红外折射率对比度以及保持其状态而无需任何电源的能力。在电信C波段上运行的许多集成设备,例如光学记忆[15],模式转换器[16],反射调节器[17],环谐振器[18],窄带过滤器[19]或基于GST的相位变速器[20] [20]。然而,尽管不断研究和提高其潜力的努力,但其可用性仍然主要限于要求光的应用
并提高了整体性能。关键词:锂离子电池、热管理、SS-PCM、混合层状钙钛矿。介绍热能存储是一个关键问题,特别是考虑到最终能源应用中热密集型过程的普遍性。潜热存储的特点是相变焓高,与敏感存储方法相比具有明显的优势,能量密度高出三到五倍。潜热存储的等温特性,加上通过材料设计调节温度的能力,使其适用于锂离子电池热管理等应用。高性能锂离子电池的需求在各种应用中显着增加,凸显了对高效热管理的迫切需求。这不仅对于确保安全至关重要,而且对于提高这些电池的寿命和最佳功能也至关重要。在这种情况下,相变材料 (PCM),特别是混合固体-固体 PCM (SS-PCM),如 2D 钙钛矿,已成为热能存储的有希望的候选材料 (Wankhede 等人,2022 年)。这些材料表现出结晶状态和半结晶状态或非晶状态之间的可逆转变,体积变化最小,且不存在与液相相关的泄漏。值得注意的是,它们具有更高的能量密度、更长的循环寿命和高效的吸热和放热能力,因此对先进的热能存储应用很有价值(Fallahi 等人,2017 年)。尽管在 20 世纪 80 年代被认为是热管理的有前途的材料(Busico 等人,1980 年),