This research was conducted by the RIKEN TRIP Initiative, and was conducted by the Japan Society for the Promotion of Science (JSPS) Science Research Funded Funded Research Project (S), "New Generation Magnetic Induction in Magnetic Conductors (Principal Investigator: Tokura Yoshinori, 23H05431)," and the Basic Research (A) "Theoretical Research on Quantum Nonlinear Response (Principal Investigator: Naganaga Naoto, 24H00197)," and the Academic Change Area Research (A) "Theory of Chimeric Quasiparticles (Principal Investigator: Murakami Shuichi, 24H02231)," and the Japan Science and Technology Agency (JST) Strategic Creative Research Promotion Project CREST "Electronic Quantum Phase Control Using Nanospin Structures (Principal Investigator: Naganaga Naoto, JPMJCR1874)"这一事件得到了针对Skyrmion的新拓扑磁科学的支持(主要研究者:U Shuzhen,JPMJCR20T1)。主持人/机构计数器 *请与主持人联系以获取有关研究内容的信息。 Riken研究人员Max T. Birch,基础科学专科研究员,密切相关的量子传导团队,新兴材料科学中心,Riken Research Institute,团队负责人Tokura Yoshinori(东京/东京大学/东京大学教授)
量子混沌是基础物理学的一个分支,研究量子力学、统计物理学和非线性动力学中的毛细管间场[1–8]。早在量子力学成立之前,1913年玻尔就提出了量化规则,并利用该规则成功地预言了氢原子的能谱,很好地解释了实验观测得到的巴尔末公式。1917年,爱因斯坦将玻尔的量化规则扩展至相空间中具有全局环面结构的可积系统[9]。随后他注意到这些量化规则仅适用于可积系统,对更一般的不可积系统则不适用[9,10]。约半个世纪后,在 20 世纪 70 年代,受到非线性动力学和混沌研究的启发,如何将半经典量化规则推广到不可积系统的问题再次引起学界的关注,并发展了 Gutzwiller 的迹公式,指出尽管测度为零,但不稳定周期轨道在塑造量子谱涨落行为方面起着至关重要的作用 [5, 11 – 23]。量子系统,如量子
具有 RQI 科学贡献记录的科学家(通常通过在知名科学期刊上发表文章来证明)有资格成为会员。在 RQI 进行高级研究的初级科学家也有资格成为会员,但需提供研究证据。会员申请通过协会网站提交给会员官:http://www.isrqi.net/ 申请应包括 RQI 科学贡献或高级研究的证据。对于初级申请人,申请可以附上更资深的科学家的推荐信,直接发送给会员官。会员官的不利决定可以向联合主席提出上诉。
我们今天拥有和学习的现代科学是用古兰经写的。《古兰经》已经向人类展示了其全球和全球的奇迹,因为古兰经仍然是人类直到今天所取得的最新发展。本研究旨在在传送故事和巴尔奇皇后王位的转移故事中检查相对论的量子理论。本研究通过分析相关书籍和期刊在文献研究中使用描述性定性研究方法。结果表明,可以通过解释相对论的量子理论来接近Balqis王位的传送和位移。相对论的量子理论涉及传送和皇后王位的转移。量子物理学相对论可以证明,王位位移的这种现象是合理和科学的。
我们不需要知道它是如何工作的,只需要看看我们的 GPS - 虽然你可能经历过偏远地区 GPS 失灵的情况。全球定位系统 (GPS) 是一个由卫星和接收设备组成的网络,用来确定地球上某物的位置,例如你的手机。今天的 GPS 接收器非常精确,它们可以将其位置 (纬度、经度和高度) 精确到厘米。它于 1973 年发明,最初仅供美国军方使用。GPS 设备记录它从每颗卫星接收到这些信息的准确时间,然后评估每个信号到达所需的时间。初步估计,通过将经过的时间乘以光速,它可以计算出它与每颗卫星的距离,比较这些距离并计算出它自己的位置。
1 上海纽约大学,上海浦东世纪大道 1555 号,邮编 200122,中国 2 尼日利亚联邦理工大学物理科学学院物理系,邮编 PMB 1526,邮编 Owerri 460001,尼日利亚 3 哈萨克斯坦纳扎尔巴耶夫大学物理系,邮编 53 Kabanbay Batyr Ave.,阿斯塔纳 0100006 4 麻省理工学院物理系,邮编 02139,美国 5 麦考瑞大学物理与天文系,邮编 2109,新南威尔士州,悉尼 6 国家信息与通信技术研究所,邮编 184-8795,日本 7 印度钦奈麦拉波罗摩克里希纳教会维韦卡南达学院物理系,邮编 600004 8 路易斯安那州立大学物理与天文系赫恩理论物理研究所,路易斯安那州巴吞鲁日70803,美国 9 中国科学技术大学中科院-阿里巴巴量子计算实验室,上海 201315,中国 10 上海纽约大学-华东师范大学物理研究所,上海市中山北路 3663 号,200062,中国 11 日本东京都小金井市贯井北町 4-2-1 信息通信技术研究所,184-8795,日本 12 华东师范大学物理与材料科学学院,精密光谱国家重点实验室,上海 200062,中国 13 日本东京都千代田区一桥 2-1-2 信息学研究所,101-8430,日本 14 纽约大学物理系,纽约州纽约市 10003,美国(日期:2019 年 11 月 6 日)
安全密钥生成的量子协议的设计面临许多挑战:一方面,它们需要在实验实现方面具有实用性。另一方面,它们的理论描述必须足够简单,以便对所有可能的攻击进行安全证明。这两个要求通常相互冲突,差分相移 (DPS) QKD 协议体现了这些困难:它被设计为可利用当前的光通信技术实现,而对于该协议,其代价是许多标准安全证明技术不适用于它。在发明约 20 年后,这项工作首次提出了 DPS QKD 针对一般攻击(包括有限尺寸效应)的完整安全证明。该证明结合了量子信息论、量子光学和相对论技术。我们首先给出 QKD 协议的安全性证明,该协议的安全性源于相对论约束。然后我们表明 DPS QKD 的安全性可以归结为相对论协议的安全性。此外,我们还表明,对 DPS 协议的连贯攻击实际上比集体攻击更强。我们的研究结果对安全可靠的量子通信技术的发展具有广泛的意义,因为它们揭示了最先进的安全证明技术的适用范围。
理事会2025年1月,美洲伊万·阿古罗(Ivan Agullo)(路易斯安那州立大学)Miles Blencowe(Dartmouth)Doreen Fraser(滑铁卢大学)EduardoMartín-Martínez(滑铁卢)亚洲 - 太平洋大学Nicholas Funai(RMIT Melbourne)Kinjalk lochan(ierband)是Anastopoulos(Patras of Patras)Fabio Costa(诺迪塔,斯德哥尔摩大学,KTH皇家技术研究所)Flavia Giacomini(EthZürich)RalfSchützhold(Helmholtz-Zentrum dresden Rossendorf) E(美国),EduardoMartín-Martínez(加拿大)2023-2024:Flaminia Giacomini(加拿大)2019-2024:Achim Kempf(加拿大)2016-2020:MartínMartínigniz(MartínMartínez(加拿大)(加拿大(加拿大)2011-2016:Juan Pablo Paz(阿根廷)2011- 2011年 - 亚洲福柯(加拿大) - 太平洋2025-ongoing:Nicholas Funai(澳大利亚),Kinjalk Lochan(印度)澳大利亚)(2016)2022:戴维·阿恩(韩国),尼克·梅尼科奇(澳大利亚)2014-2017:Masahiro Hotta(日本),Choo-hiap OH(新加坡),马特·维瑟(新西兰),2011- 2016年,2011- 2016年:Shih-Yuin Lin(Taiwan),Timothy Ralph(Timothy Ralph)(澳大利亚),Daniel Triel TRIER TRIEN LIANE,2013年13年,