在 GRCh37 之后发布的更新版本,包含了更多的改进,例如填补了序列间隙( gaps )、修正 了一些错误组装的区域、增加了着丝粒序列,并在某些区域增加了 alternate loci 来代表序列 的多样性。这些改进使得 GRCh38 在基因组分析中,尤其是在检测结构变异方面,比 GRCh37 具有更高的准确性和可靠性。 GRCh38 相比于 GRCh37 ,减少了一些 N (表示序列间隙或未注 释区域)的数量,增加了 GC 含量,并且扩大了外显子组的大小。
对最近的人类基因组组装的比较分析突出了显著的序列差异,这种差异在着丝粒等多态性位点内达到顶峰。这引发了一个问题,即依赖人类参考基因组来准确分析来自实验细胞系的测序数据是否合适。在这里,我们提出了一种称为“同基因组参考”的新方法,该方法利用匹配的参考基因组进行多组学分析。我们为人类视网膜上皮细胞 (RPE-1) 生成了一个新的二倍体基因组组装,RPE-1 是一种广泛使用的非癌症实验室细胞系,具有稳定的二倍体核型,呈现出完全跨越着丝粒的分阶段单倍型和染色体水平支架。利用该组装体,我们表征了 RPE- 1 独有的单倍型解析基因组变异,包括一个稳定的标记染色体 X,其中 73.18 Mb 的 10 号染色体片段重复易位至该细胞系特有的微缺失端粒 t(X q ;10 q )。比较分析揭示了着丝粒区域内的序列多态性,包括所有染色体单倍型之间的意外遗传和表观遗传多样性。使用我们的组装体作为参考,我们重新分析了我们自己的和公开的 RPE-1 中生成的测序、甲基化和表观遗传数据,这些数据之前已使用非匹配和非二倍体参考基因组进行分析。我们的结果表明,同基因组参考可改善比对,将映射质量提高高达 85%,同时将错配减少一半,从而导致与着丝粒相关的峰调用发生显著变化。我们的工作代表了一个概念验证,展示了匹配的参考基因组在多组学分析中的应用,并在规模上为全面组装实验相关细胞系以广泛应用同基因组参考基因组奠定了基础。关键词:人类参考;二倍体基因组;从头组装;基因组参考;着丝粒组装;实验室细胞系;多组学分析;表观遗传学;人类多态性;实验细胞系;同基因组参考。
抑制或稳定有丝分裂中的 SUMO 化都会导致染色体分离缺陷,这表明蛋白质的动态有丝分裂 SUMO 化对于维持基因组的完整性至关重要。Polo 样激酶 1 - 相互作用检查点解旋酶 (PICH) 是一种有丝分裂染色质重塑酶,它通过三个 SUMO 相互作用基序 (SIM) 与 SUMO 化的染色体蛋白相互作用,以控制它们与染色体的结合。使用条件性 PICH 耗竭/PICH 替换的细胞系,我们发现有丝分裂缺陷与 PICH 对 SUMO 化染色体蛋白的功能受损有关。PICH 的重塑活性或 SIM 缺陷会延迟有丝分裂进程,这是由纺锤体组装检查点 (SAC) 激活引起的,这由着丝粒处 Mad1 焦点的持续时间延长所表明。通过对染色体 SUMO 化蛋白(其丰度受 PICH 活性控制)进行蛋白质组学分析,确定了可解释 SAC 激活表型的候选蛋白。在已确定的候选蛋白中,PICH 缺失时 Bub1 着丝粒丰度会增加。我们的研究结果证明了 PICH 和 SAC 之间的新关系,其中 PICH 直接或间接影响着丝粒上的 Bub1 关联,并影响 SAC 活性以控制有丝分裂。
单倍体的产生是加速植物育种过程的最有效手段之一。在大多数作物物种中,有效的单倍体技术尚未出现或仅适用于有限的一组基因型。最近发表的关于拟南芥和玉米、小麦等主要谷类作物通过 CRISPR/Cas9 介导的着丝粒组蛋白 H3 基因 (CENH3) 编辑成功诱导单倍体的研究结果表明,这种生产单倍体植物的新方法也可能适用于胡萝卜等蔬菜物种。在这里,我们报告并总结了过去几年专注于基于 CRISPR/Cas9 编辑胡萝卜 CENH3 基因的不同实验和遗传方法。我们还描述了在胡萝卜基因组中发现的第二个 CENH3 基因位点,这使生成和分析假定的单倍体诱导基因型的尝试变得复杂。我们表明,三种不同的 CRISPR/Cas9 靶构建体(单独使用或组合使用)可以成功靶向胡萝卜 CENH3。已经发现了有希望的突变体,例如同框插入/缺失或同框删除突变体,但它们是否能成功用作假定的单倍体诱导物尚不确定。跨越 CRISPR 靶位点的扩增子的下一代测序和基于转录本的扩增子测序似乎是选择有希望的突变体、估计突变频率和首次预测涉及哪个基因的合适方法。本研究的另一个目的是用外来 CENH3 基因同时敲除和补充内源胡萝卜 CENH3 基因。利用根瘤菌将基于 CRISPR/Cas9 的胡萝卜 CENH3 敲除构建体与从人参 (Panax ginseng) 克隆的 CENH3 基因共转化。结果表明,人参 CENH3 蛋白在胡萝卜染色体的着丝粒区域内积累,表明 PgCENH3 可能是这种方法的合适候选者。然而,目前尚不清楚该基因是否在减数分裂细胞分裂过程中充分发挥作用并能够补充致死配子。本文讨论了开发基于 CENH3 的胡萝卜 HI 系统的挑战和未来前景。
摘要 有丝分裂在基于微管的纺锤体控制下,是抗癌治疗的一个有吸引力的靶点,因为癌细胞会经历频繁且不受控制的细胞分裂。破坏有丝分裂的微管靶向剂或有丝分裂激酶或微管马达的单分子抑制剂可以高效杀死癌细胞。然而,这些治疗方法存在严重的缺点:它们还针对经常分裂的健康组织,例如造血系统,并且由于原发性或获得性耐药机制,它们经常失去效力。在癌细胞分裂中出现的另一个目标是它们将有丝分裂纺锤体的极点“聚集”成双极结构的能力。这种机制对于癌细胞的特定存活是必要的,这些癌细胞由于经常存在异常的着丝粒数目或其他纺锤体缺陷而倾向于形成多极纺锤体。在这里,我们讨论了针对纺锤体极点聚集的组合治疗的最新发展,这些治疗专门针对具有异常着丝粒数目的癌细胞,并且由于其组合性质,有可能避免耐药机制。
摘要 有丝分裂在基于微管的纺锤体控制下,是抗癌治疗的一个有吸引力的靶点,因为癌细胞会经历频繁且不受控制的细胞分裂。破坏有丝分裂的微管靶向剂或有丝分裂激酶或微管马达的单分子抑制剂可以高效杀死癌细胞。然而,这些治疗方法存在严重的缺点:它们还针对经常分裂的健康组织,例如造血系统,并且由于原发性或获得性耐药机制,它们经常失去效力。在癌细胞分裂中出现的另一个目标是它们将有丝分裂纺锤体的极点“聚集”成双极结构的能力。这种机制对于癌细胞的特定存活是必要的,这些癌细胞由于经常存在异常的着丝粒数目或其他纺锤体缺陷而倾向于形成多极纺锤体。在这里,我们讨论了针对纺锤体极点聚集的组合治疗的最新发展,这些治疗专门针对具有异常着丝粒数目的癌细胞,并且由于其组合性质,有可能避免耐药机制。
尽管拟南芥最初主要是一个功能生物学系统,但由于其广泛的地理分布和对不同环境的适应性,它已发展成为种群基因组学的强大模型。这里我们展示了来自全球物种范围的 69 个种质的染色体水平基因组组装。我们发现基因组共线性非常保守,即使在地理和遗传上相距遥远的种质之间也是如此。沿着染色体臂,兆碱基级重排很少见,通常只存在于单个种质中。这表明核型是准固定的,染色体臂中的重排是反向选择的。着丝粒区域显示出更高的结构动态,核心着丝粒的分歧解释了大多数基因组大小变化。全基因组分析发现了 32,986 个不同的基因家族,其中 60% 存在于所有种质中,40% 似乎是可有可无的,包括 18% 只存在于单个种质中,这表明存在未开发的基因多样性。这 69 个新的拟南芥基因组组装将为未来的遗传研究提供助力。
真核生物基因组中经常散布着大量串联重复序列,称为卫星 DNA,这些序列是组成性异染色质的基础,常位于着丝粒区域周围。虽然某些卫星 DNA 类型在着丝粒生物学中具有明确的作用,但其他丰富的卫星 DNA 的功能尚不明确。例如,人类卫星 3 (HSat3) 约占人类基因组的 2%,形成高达数十兆碱基的巨大阵列,但这些阵列在着丝粒功能中没有已知的作用,直到最近才几乎完全被排除在基因组组装之外。因此,这些巨大的基因组区域仍然相对研究不足,而 HSat3 的潜在功能作用在很大程度上仍然未知。为了解决这个问题,我们对新的 HSat3 结合因子进行了系统筛选。我们的工作表明,HSat3 阵列含有高密度的转录因子 (TF) 基序,这些基序与与多个高度保守的信号通路相关的因子结合。出乎意料的是,HSat3 中最富集的 TF 属于 Hippo 通路转录效应子家族 TEAD。我们发现 TEAD 以细胞状态特异性的方式将辅激活因子 YAP 募集到 HSat3 区域。利用 RNA 聚合酶-I 报告基因检测、HSat3 的靶向抑制、YAP 的诱导降解和超分辨率显微镜,我们表明 HSat3 阵列可以将 YAP/TEAD 定位在核仁内,YAP 在那里调节 RNA 聚合酶-I 活性。除了揭示 Hippo 通路与核糖体 DNA 调控之间的直接关系外,这项研究还表明卫星 DNA 可以编码多个转录因子结合基序,为这些巨大的基因组元素定义了新的作用。
串联重复序列,或广义上的卫星序列,是基因组普遍性和功能相关性研究最多的重复序列。卫星序列这一术语于 1961 年诞生,因为在平衡沉降实验中,这些序列分布在主体 DNA 带的上方和下方。 [3] 卫星序列根据其大小可分为:i)微卫星序列或短串联重复序列 (STR),既短(每个模式 2 到 6 bp 长的序列),又丰富(约覆盖我们基因组的 3%),代表性例子是端粒微卫星 d[TTAGGG] n ,重复序列 >10 kb;ii)微卫星序列/模式长约 15 bp,阵列长度高度可变(从 0.5 到 30 kb); iii)卫星(约 200 bp 长的序列/模式)构成了着丝粒和着丝粒周围和亚端粒区域的大部分,其中 α 卫星最为丰富(约占卫星 DNA 的 50% 和所有 DNA 重复的 10%);以及 iv)大卫星(> 1 kb 长的序列/模式)代表大的染色体区域。[4]
摘要 ◥ TACC3 是转化酸性卷曲螺旋 (TACC) 家族成员,在包括乳腺癌在内的多种癌症中经常上调。它在保护微管稳定性和着丝粒完整性方面起着关键作用,而微管稳定性和着丝粒完整性在癌症中经常失调;因此,TACC3 是一个极具吸引力的治疗靶点。在这里,我们通过筛选内部化合物集合确定了一种新的 TACC3 靶向化学型 BO-264。通过使用多种生化方法验证了 BO-264 和 TACC3 之间的直接相互作用,包括药物亲和力响应靶标稳定性、细胞热位移分析和等温滴定量热法。 BO-264 表现出优于目前报道的两种 TACC3 抑制剂的抗增殖活性,尤其是在侵袭性乳腺癌亚型(基底和 HER2+)中,通过纺锤体组装检查点依赖的有丝分裂停滞、DNA 损伤和细胞凋亡,而对正常乳腺细胞的细胞毒性