第二次世界大战后,人们重新燃起对确保飞机能够在能见度极低的天气条件下安全着陆这一长期目标的兴趣,这促使英国、法国和美国开展了自动着陆系统的研究和开发计划。在回顾了着陆辅助设备的早期发展历史之后,本文介绍了 1945 年至 20 世纪 60 年代初英国皇家飞机研究院盲着陆实验组在导航系统、自动驾驶仪耦合器和操作技术方面所做的工作。其中进行的分析和实验工作促成了 Avro Vulcan 轰炸机单通道自动着陆系统的设计,本文也详细介绍了这些工作。同样,本文还介绍了英国飞机和航空电子设备制造商、民航局和航空登记委员会对霍克西德利三叉戟、维克斯 VC10 和其他民用运输飞机上采用的多通道系统的后续开发和适航认证所做的贡献。本文最后总结了波音 737、747、767 和协和式飞机的自动着陆能力。 1. 简介和早期历史 民航客机在各种天气条件下的自动着陆已成为民航的常规组成部分,并有助于提高航空运输的安全性和可靠性。英国在这一发展中发挥了重要作用,皇家航空研究院的盲着陆实验单元就是其中之一
飞机的起飞和降落是飞行的最重要阶段,因此了解飞机的起飞和降落特性非常重要,研究起飞和降落性能对于飞机的设计和安全至关重要。因此,在本文中,我们朝着提高起飞和降落的安全性和效率迈出了一步。通过启发和借鉴EMALS系统和磁悬浮的概念,我们尝试引入一种称为FTOLS(无摩擦起飞和降落系统)的新跑道概念,这将提高着陆和起飞的效率。在本文中,我们提出了一种具有一定倾斜度和安装磁场的新跑道设计,其在着陆和起飞过程中极性会发生变化并导致加速(起飞)和减速(着陆)。此外,还为海湾或类似重量的民用飞机提出了FTOLS飞机部分的设计程序,因为它的重量较轻,净空高度较低,并且在机身,机翼和尾部安装超级磁场也很容易。新系统建议通过减少跑道距离、减少燃料消耗、降低噪音以及减轻飞机重量来提高着陆和起飞效率。
飞行员通常认为,在航空母舰上着陆是最困难的训练之一,因为能见度条件、航空母舰动力学和狭小的着陆区使着陆变得复杂。根据能见度条件,可以使用几种接近航空母舰的方法,如 [1] 中所述。在我们的案例中,研究的轨迹包括在距离航空母舰 7.5 公里处开始下降,并将钩子放在所需的下降滑行上。为了确保着陆精度,不进行拉平。方法可以总结为保持下降率和迎角恒定,以保持飞机稳定性并防止失速。航空母舰上的着陆控制并不是一个新问题。它使用经典传感器(如雷达或相对 GPS [2])进行研究,这些传感器确定相对于参考轨迹的误差,并使用控制律对其进行校正,该控制律可以是最优的 [3] 或鲁棒的 [4]。[3] 中实现了一些航空母舰动力学预测模型,以改进控制。几十年来,出于认知和安全方面的考虑,人们一直在研究飞行员着陆时使用的视觉特征。目的是了解飞行员使用的特征并确定他们的敏感性[5],以便模拟人类反应并改善飞行员训练。[6] 介绍了用于在对准、进近和着陆期间控制飞机的视觉特征的相当完整的最新技术水平。例如,消失点和撞击点之间的距离允许飞行员跟随下降滑行。在[7]和[8]中,考虑到小角度假设,建立了相对姿势和视觉特征之间的联系。航母着陆主要在辅助系统范围内研究,该辅助系统处理光学着陆系统的可见性。海军飞行员降落在航母上的方法之一是控制飞机,以便将平视显示器 (HUD) 上的下滑道矢量聚焦到甲板上的三角形标记上,如图 1a 所示。另一种方法是将飞机的下滑道矢量与甲板上的三角形标记对齐,如图 1a 所示。
摘要 起落架是飞机的主要部件之一。起落架不仅在起飞和降落时使用,而且在大多数情况下也用于地面机动。由于其功能,起落架也是飞机的关键安全部件之一,因为它可以分散作用在飞机上的着陆载荷。上述载荷来自着陆时的垂直和水平速度,以及飞机因刹车而失去速度。起落架在每次着陆时都会承受不断变化的力,作用在各个方向上,唯一的区别在于它们的大小。重复的载荷条件会导致起落架严重磨损。这种磨损可分为两类,一类是刹车片等易耗件的磨损,另一类是结构部件的疲劳磨损。后一种磨损更危险,因为它进展缓慢,在许多情况下难以察觉。疲劳磨损可以通过数值分析来估计——这种方法对单个部件有很大的概率,但由于起落架整体的复杂性,它不够精确,无法应用于整个结构。为了评估整个起落架的疲劳,法规接受的最佳方法是实验室测试方法。它涉及一系列类似于真实着陆条件分布的各种跌落测试。测试的目的是
政府和私人关键基础设施对 GNSS 应用的依赖,包括民用和军用方面。EA 可能价格昂贵且功率高,例如军用级干扰器,它们是导航战 (NAVWAR) 战略不可或缺的支柱。另一方面,EA 可能价格低廉且功率低,例如所谓的个人保护设备 (PPD),它们随处可见。ICAO 和 FAA 最关注的电子攻击发生在地面增强系统 (GNSS/GBAS) 着陆系统中,由于所有航班的最终着陆阶段都很敏感,因此比其他应用风险更大、更关键。本研究的目的是评估三种不同类型的 EA 对 GNSS/GBAS 着陆系统性能的影响。另一方面,解决和检查他们最新提出的电子保护措施 (EPM)。关键词:全球导航卫星系统、地面增强系统、NAVWAR、电子
在太空着陆操作期间,准确估计航天器的相对姿态对于确保安全成功着陆至关重要。本文提出了一种基于 3D 光检测和测距 (LiDAR) 的 AI 相对导航架构解决方案,用于自主太空着陆。所提出的架构基于混合深度循环卷积神经网络 (DR-CNN),将卷积神经网络 (CNN) 与基于长短期记忆 (LSTM) 网络的循环神经网络 (RNN) 相结合。获取的 3D LiDAR 数据被转换为多投影图像,并将深度和其他多投影图像输入 DRCNN。该架构的 CNN 模块可以有效地表示特征,而 RNN 模块作为 LSTM,可提供鲁棒的导航运动估计。我们考虑、模拟和实验了各种着陆场景,以评估所提出架构的效率。首先使用 PANGU(行星和小行星自然场景生成实用程序)软件创建基于 LiDAR 的图像数据(范围、坡度和海拔),然后使用这些数据对所提出的解决方案进行评估。建议使用 Gazebo 软件中的仪表化空中机器人进行测试,以模拟在合成但具有代表性的月球地形(3D 数字高程模型)上着陆的场景。最后,使用配备 Velodyne VLP16 3D LiDAR 传感器的真实飞行无人机进行真实实验,以在设计的缩小版月球着陆表面上着陆时生成真实的 3D 场景点云。所有获得的测试结果表明,所提出的架构能够通过良好合理的计算提供良好的 6 自由度 (DoF) 姿势精度。
首次使用前,请务必将电池充满电。请参阅“智能飞行电池充电”(P21)了解更多信息。如果您购买了双遥控器版本,则必须使用主遥控器关闭旅行模式。有关主遥控器的更多信息,请参阅“设置双遥控器模式”(P30)部分。从着陆模式切换到旅行模式之前,请务必将云台从飞行器上卸下。在从旅行模式切换到着陆模式之前,请将飞行器放置在光滑且有反射的表面上(例如桌子或瓷砖)。在从旅行模式切换到着陆模式之前,请勿将飞行器放置在粗糙且吸音的表面(例如地毯)。
前五次热流运行失败,因为热流组件中的着陆接头落在活塞取芯器密封套的顶部,导致流体绕过密封件。在最后一次运行中,着陆接头被换成了内筒接头。密封组件正常着陆,并在 500 磅/平方英寸的钻机压力下进行热流测量,将探头牢牢锁定在原位,进行 30 分钟的测量。当钻头承受 10,000 磅的重量以及一些缓冲接头冲击时,防喷器保持液压锁。热流探头完好无损地被恢复并带入岩心实验室进行数据恢复。不幸的是,在尝试读出内存时数据丢失了。没有时间进行额外的运行,钻柱被拉出,船只被固定,以便短途巡航到下一个地点。
• 政府要求能力的进展 • 月球着陆(1 个月球日,最多 14 个地球日) • 南极着陆(PRIME-1、TO-19C) • ~500 公斤有效载荷(VIPER;TO20A) • 精密/复杂的有效载荷补充(TO-19D、CP-11) • 远端着陆(数据返回;CP-12)(STN 仪器) • 移动即服务(未来 TO CP-21) • 目标轨道交付(TO CS-3、CS-4)(STN 仪器) • 夜间着陆器生存(未来)