本书的组织结构如下:第 1 章阐述了程序构建的四个原则。第 2 章讨论了计算机程序的被动部分:数据。第 3 章描述了每个程序的三个部分。第 4 章相当长,介绍了构造(来自控制结构),并附有练习来测试您的学习效果。第 5 章描述了让程序运行的过程,第 6 章提供了一个检查表,以帮助确保您的程序在运行之前(和之后)处于最佳状态。第 7 章是一堂简短的课程,教你如何在程序运行不正确时纠正它(是的,即使前面几章中有很多“好东西”,但仍然会出错)。第 8 章包含对几种编程语言的简要回顾,并揭示了我对某些语言的不为人知的偏见。第 9 章至第 141 章分别针对一种特定的编程语言;这里没有提供足够的细节来充分利用任何语言,但足以让你成功入门。遵循以下列表
*我们很自豪地说我们是免费的孩子的屏幕。我们实用的,动手的方法可以吸引儿童并建立技能,而无需技术。但是,调查人员可以选择使用技术来展示他们的学习,例如拍摄视频,拍照或录制音符。
每一个伟大的范式转变都来自有人质疑自己时间的随机性。伽利略在天上看到了秩序,当时其他人看到天体混乱。爱因斯坦看到了时空的结构,当时其他人看到了分开的力。gödel看到逻辑本身的不完整,当他人认为自己已经建立了密封系统。现在,代码(动态紧急系统的手学)是下一个不可避免的转移的出现 - 避免这种概率不是基本的,而是不完整的共振检测遗迹。
西奥多·罗斯福 (1858-1919) 于 1901 年至 1909 年担任美国第 26 任总统。他是社会活动主义、进步政治改革和环境保护的早期支持者。与罗斯福同属一个圈子的美国历史学家亨利·亚当斯 (Henry Adams) 这样描述这位前总统:“罗斯福比任何其他人都更纯粹。”以下摘录来自罗斯福卸任一年后在法国发表的一篇题为“共和国公民身份”的长篇演讲。该摘录被称为“竞技场中的人”演讲,因为深度参与需要勇气、技能或毅力的情况的人(而不是坐在场边观看的人)有时被称为“竞技场中的人”。阅读时,记下摘录的措辞和结构对其含义的影响。
关于发明人资格问题,中期报告指出,一般认为,一个人要想成为“发明人”(或共同发明人),必须对发明中独特的部分(即,在现有技术中不存在的部分,并且是解决该发明所特有问题的手段的基础)的完成做出创造性贡献。中期报告还指出,单纯的管理者、助手或赞助人不被视为发明人,法院判决也采用了类似的标准来确定“发明人”的身份(第 84 页)。中期报告还指出,根据日本《专利法》的相关规定,只有自然人才能成为“发明人”(第 84-85 页)3。鉴于这些考虑,中期报告指出,当人工智能用于协助完成一项发明时,“根据传统观点,发明人是对发明的独特部分完成作出创造性贡献的人,发明人应该是相关自然人。”(第 85 页)。
摘要 知识密集型任务对机器学习 (ML) 技术提出了重大挑战。常用的方法,例如大型语言模型 (LLM),在应用于此类任务时往往会表现出局限性。尽管如此,人们已经做出了显著的努力来缓解这些挑战,重点是通过知识图谱 (KG) 来增强 LLM。虽然 KG 在表示知识方面具有许多优势,但它们的开发成本可能会阻碍广泛的研究和应用。为了解决这一限制,我们引入了一个框架,用于使用完善的通用 KG 来丰富小规模领域特定知识图谱的嵌入。采用我们的方法,当链接到大量通用 KG 时,适度的领域特定 KG 可以从下游任务的性能提升中受益。实验评估表明性能显着增强,Hits @ 10 指标最高可提高 44%。这个相对未被探索的研究方向可以催化知识图谱更频繁地融入知识密集型任务中,从而产生更稳健、更可靠的机器学习实现,这比普遍存在的 LLM 解决方案更少产生幻觉。
目的:这项研究的目的是调查马来西亚人中对Covid-19的知识,疫苗偏好和恐惧。材料和方法:这项在线问卷调查是从2021年9月6日至2021年11月12日通过成人马来西亚人的Google表格进行的。为了收集数据,将经过试验的经过验证的问卷调查给387个样本。由参与者的社会人口统计学特征,有关信息来源的COVID-19疫苗的知识,参与者的特定疫苗偏好,具有理由,疫苗接种状态和COVID-19的恐惧的调查表。结果和讨论:参与者对Covid-19疫苗有良好的了解。总共275(71%)参与者表现出对特定疫苗的偏爱;辉瑞-biontech是最优选的(61.5%)疫苗。偏爱的主要原因是有效性(56.4%)。疫苗优先组的参与者获得的知识评分(7.38/8)比非偏爱(7.28/8)的知识评分更高。总共376名(97%)的受访者接种疫苗,其中250名(66.5%)接受了首选疫苗,而22(5.85%)未获得挑选,而休息却没有偏爱。在11名未接种疫苗的参与者中,有3名拒绝接种疫苗,以提供非脱颖而出的疫苗。与非接种疫苗的组相比,疫苗接种组中对共vid-19分数的恐惧更高(21.34/35)(19.09/35),尽管没有观察到显着差异。结论:大多数马来西亚人都对COVID-19疫苗接种知识渊博,接受了疫苗优先和疫苗接种。疫苗偏爱的参与者比没有明显差异的非偏爱更具知识渊博。在非接种疫苗的参与者中,有27%(3/11)拒绝提供的疫苗接种,如提供的非偏爱疫苗。疫苗接种组对19009的恐惧比非接种疫苗的恐惧更多,而差异无关。提高意识是人们不愿意或犹豫接种疫苗所必需的。
抽象课程推荐系统可以通过利用用户交互数据来帮助学生识别合适或有吸引力的课程,这显示了用户和课程之间以前的参与。但是,现有课程推荐系统的普遍问题是它们倾向于优先考虑准确性而不是解释性。这些复杂模型的“黑框”性质提出了一个挑战:准确表征和建模用户的偏好,同时还提供明确的,具有预性和可解释的用户配置文件。为了解决这种限制,我们为课程推荐提出了一个新颖的知识实体感知模型,该模型称为KEAM,该模型基于知识图的详细信息支持明确的用户个人资料生成,以增强学生对建议背后的理由的理解。具体来说,我们利用知识图中编码的信息,通过更换隐藏单元来使用神经网络之间建立单位之间的连接。接下来,对模型进行了培训,可以捕获学生的偏好并创建用户配置文件,以提供可解释的建议。在两个现实世界的在线数据集上进行了全面的实验,以评估所提出的模型的有效性和解释。
长期以来,科学家一直对利用干细胞的能力很感兴趣。干细胞是一种未分化的、自我复制的细胞,能够在生物体内分化成分化细胞。多能干细胞,包括胚胎干细胞,能够分化成生物体内的任何细胞。科学家认为,更多地了解干细胞将使他们能够开发出各种疾病的治疗方法和潜在治疗方法。然而,许多人反对将胚胎用于科学目的。2001 年,美国总统乔治·W·布什签署了一项行政命令,限制联邦政府资助从人类胚胎中获得的干细胞研究;2009 年,美国总统巴拉克·奥巴马推翻了这项禁令。阅读时,记下关于干细胞研究的不同观点。