摘要雌激素的生物学作用是由雌激素受体α或β(ERα或ERβ)介导的,这些雌激素受体α或β(ERα或ERβ)是广泛的核受体超家族的成员。大量体内和体外研究表明,经典ERα和ERβ调节循环雌激素的丧失导致胰腺β细胞和胰岛功能,GLUT4表达,胰岛素敏感性和葡萄糖耐受性,功能障碍性脂质稳态,氧化抑制作用,氧化性壳体和炎症性壳体的快速变化。非常明显,17β-雌激素(E2)可以完全逆转这些影响。本综述评估了当前对经典ER在临界途径和与胰岛素抵抗和2型糖尿病(T2DM)相关的分子机制中的保护作用的理解。它还研究了更年期激素治疗(MHT)在降低更年期妇女中T2DM的风险方面的有效性。临床试验表明,MHT对葡萄糖代谢的保护作用,这对于治疗中绝经妇女的T2DM可能很有用。但是,人们担心E2在绝经中肥胖和高脂血症的潜在副作用。有必要进行进一步的研究以获得理解并找到绝经后妇女治疗胰岛素抵抗和T2DM的其他雌激素替代方法。
摘要:合成微生物群落在生物技术中的价值因其承担比单一培养更复杂的代谢任务的能力而受到关注。但是,通常需要对应变相互作用,生产率和稳定性进行彻底的了解,以优化生长并扩大培养。定量蛋白质组学可以为微生物菌株如何适应生物制造的变化条件提供宝贵的见解。但是,当前的工作流和方法不适用于应变比是动态的简单人工共培养系统。在这里,我们使用包含两个成员Azotobacter Vinelandii和Synechococcus Elongatus的示例系统建立了共培养蛋白质组学的工作流程。研究了影响共培养蛋白质组学定量准确性的因素,包括肽物理化学特征,例如分子量,等电点,疏水性和动态范围,以及与蛋白质鉴定有关的因素,例如蛋白质体大小和种群之间的共享肽。在蛋白质和细胞水平上评估了基于光谱计数和强度的不同定量方法。我们提出了一种名为“ LFQRATIO”的新归一化方法,以反映两种不同细胞类型的相对贡献,这些细胞类型从共培养过程中出现的细胞比率变化出现。lfqratio可以应用于实际共培养蛋白质组学实验,从而为每个菌株中定量蛋白质组变化提供准确的见解。关键字:微生物共培养,定量蛋白质组学,无标签定量,synechococcus,Azotobacter■简介
基于数字高程模型(DEM)的土地表面定量分析已用于改善Piedmont冲积风扇的地貌图。的确,这些粉丝经常沿着山区阵线,最终可能会发生一系列融合的粉丝。相邻风扇的边缘很难映射,从而防止了对风扇形态计量学特性(例如风扇面积,长度和斜率)的准确和有意义的量化。这些形态计量学特性对于告知气候条件和构造因素对粉丝构建过程的影响至关重要。因此,在本文中,我们在反黎巴嫩山脉的南部沿线提出了一种约50公里的定量数字映射方法。在这里,叙利亚的地貌图的1:1,000,000(1963年)报道了至少九个皮埃蒙特冲积粉丝,但这些特征在地貌特征和施工过程方面的特征很差。采用1-arcsec SRTMV3 DEM,我们提出了一个四步工作流程来分析进食集水区的形态和风扇形态计。以这种方式,改善了CoA Piedmont风扇的识别和地貌图以及对主要建筑过程的认识。所提出的方法可以支持对广泛和难以接近的地区的地貌研究,尤其是在干旱和半干旱气候条件占上风的地方以及社会政治问题可能阻止有效的现场工作的地方。
遗传密码研究探索了生命的基本语言,旨在了解 DNA 如何协调蛋白质的合成。本研究探索了遗传密码的各个方面,从广泛使用的三联体密码子系统到转移 RNA (tRNA) 在翻译中的重要作用。本研究揭示了密码子和反密码子之间相互作用的复杂性以及核糖体的协调,阐明了蛋白质合成的起始、延长和终止阶段。此外,它还深入研究了影响翻译过程的调节因素和质量控制机制。在探索遗传密码的进化过程中,本研究仔细研究了它的普遍原则、例外情况以及围绕其起源的令人信服的猜想。tRNA 和密码子的共同进化,以及在不同生物体和细胞器中观察到的密码的适应性,提供了有价值的见解。值得注意的是,这项研究强调了基因工程、密码子优化和蛋白质设计等广泛的生物技术应用。这项研究不仅解决了遗传密码研究中的未知领域,还提出了未来的研究方向。它强调了该领域当前的挑战和机遇,包括密码扩展和基因编辑进步。最终,遗传密码研究仍然是一个充满活力、不断发展的领域,对科学、技术和我们对生命基本过程的理解具有深远的影响。这项研究揭示了遗传密码的迷人故事,揭示了继续吸引和启发人们的新领域和应用。
哺乳动物/mTOR是丝氨酸 - 硫代激酶。它控制了哺乳动物细胞的许多重要功能,例如细胞存活和蛋白质合成[4]。在2000年代初期,神经科学家开始对MTOR目标的兴趣。4E结合蛋白和P70核糖体S6蛋白激酶1最初研究[5]。在确定MTOR在神经元形态发生,生存和分化中的作用后不久,靶标开始流行,许多科学家在PD和Alzheimer病(AD)等不同疾病中观察到了其在不同疾病中的作用。与MTOR相关的生理状况和神经病理列表迅速增加,但是对MTOR调节及其神经元中其细胞效应子的透彻了解仍然难以捉摸。自噬,翻译,细胞信号传导,转录和细胞骨架动力学都受MTOR活性变化的影响[6]。根据新的研究,MTOR的过表达与PD的发病机理有关[7,8]。结果,mTOR可能是PD的可能治疗靶标之一[9]。MTOR活动很有争议。它具有
摘要:检查肠道病原体与肠道菌群之间的相互作用对于充分理解肠病毒的致病作用及其对人类健康的广泛影响至关重要。在实验室实践中引入了人类研究的有效替代方法,以评估传染剂对肠道菌群的影响,从而探索它们在肠道功能和整体健康中的翻译意义。不同的动物物种目前被用作肠道感染的宝贵模型。此外,考虑到类似于肠道环境的生物工程的最新进展,也可以为此目的提供。In this review, the impact of the main human enteropathogens (i.e., Clostridioides difficile , Campylobacter jejuni , diarrheagenic Escherichia coli , non-typhoidal Salmonella enterica , Shigella flexneri and Shigella sonnei , Vibrio cholerae , and Bacillus cereus ) on intestinal microbial communities is summarized, with specific强调采用动物和体外模型的研究得出的结果。
摘要简介:远程缺血条件上调会响应缺血 - 再灌注损伤,内源性保护途径。这项研究检验了以下假说:肢体远程缺血性(RIPERC)通过肾素 - 血管紧张素系统(RAS)/可诱导的一氧化物氧化物合酶(INOS)/ apelin途径发挥心脏保护作用。再灌注;假手术大鼠用作对照。RIPERC是由四个周期(5分钟)的肢体缺血再灌注以及双侧肾脏缺血引起的。通过肾脏(BUN和肌酐)和心脏(肌钙蛋白I和乳酸脱氢酶)损伤生物标志物评估功能性障碍。结果:肾脏I/R损伤增加了RIPERC组减少的肾脏和心脏损伤生物标志物。肾脏和心脏的组织病理学发现也暗示了改善损伤引起的RIPERC组的变化。心脏电生理学的评估表明,RIPERC可以改善P波持续时间的下降,而不会显着影响其他心脏电生理学变化。此外,肾脏I/R损伤增加了血浆(322.40±34.01 IU/L),肾脏(8.27±1.10 mIU/mg的蛋白质)和心脏(68.28±10.28±10.28 miU/mg蛋白质/毫克蛋白质)蛋白质 - 蛋白质)血管素 - 转换剂量(ACE)的升高和培训均与升高相关性。 (25.47±2.01&16.62±3.05μmol/L)和硝酸盐(15.47±1.33&5.01±0.96μmol/L)级别;这些变化被RIPERC逆转。此外,肾脏缺血 - 再灌注损伤显着(P = 0.047)降低了肾脏(但不是心脏)Apelin mRNA的表达,而肾脏和心脏ACE2(P <0.05)和INOS(p = 0.043)mRNA表达显着增加了。这些作用在很大程度上被RIPERC逆转。结论:我们的结果表明,RIPERC可以保护心脏免受肾脏缺血 - 再灌注损伤,这可能是通过Apelin与RAS/Inos途径的相互作用。
遗传学是生物学和遗传学交叉领域的一个迷人领域,它深入研究了性状遗传和生命多样性背后的基本机制。它为我们提供了一个窗口,让我们了解定义我们是谁、我们如何发展以及物种之间为何不同的复杂代码。遗传学的核心是试图解开基因(DNA 中编码的分子指令)如何塑造生物体各个方面的奥秘 [1]。遗传学研究历史悠久,跨越数个世纪,始于现代遗传学之父格雷戈尔·孟德尔的工作,他在 19 世纪中叶仔细观察了豌豆植物的遗传模式。他的开创性见解为理解性状从一代传到下一代奠定了基础。从那时起,遗传学以惊人的速度发展,詹姆斯·沃森和弗朗西斯·克里克发现 DNA 双螺旋结构标志着 20 世纪中叶的一个关键时刻。这一发现揭开了生命的蓝图,开启了基因探索的新时代[2]。
癌症免疫疗法,包括免疫检查点抑制(ICI)和收养免疫细胞治疗,是有希望的治疗策略。他们重新激活免疫细胞的功能,并诱导免疫反应攻击肿瘤细胞。尽管这些新型疗法对大量癌症患者有益,但许多癌症患者表现出公平的反应,甚至对癌症免疫疗法的抵抗力,从而限制了其广泛的临床应用。因此,迫切需要探索癌症免疫疗法的低反应和抵抗力的潜在机制,以增强其治疗效率。已证明包括铁吞作用在内的程序性细胞死亡(PCD)在抗肿瘤免疫和调节ICIS的免疫反应方面起着重要作用。铁凋亡是一种磷脂过氧化介导的铁依赖性膜损伤,表现出三个关键标志:磷脂的氧化,缺乏脂质过氧化脂蛋白修复能力和氧化还原活性铁的过载。值得注意的是,发现铁铁作用在调节肿瘤免疫和对免疫疗法的反应中起着重要作用。因此,单独或与免疫疗法结合靶向铁铁作用可能会提供新颖的选择来促进其抗肿瘤效率。然而,铁凋亡对肿瘤免疫和免疫疗法的影响受铁毒性和癌细胞,免疫细胞,肿瘤微环境(TME)等的相互作用的影响。在这篇综述中,我们总结并讨论了铁凋亡在调节抗肿瘤免疫,TME和改善癌症治疗效率方面的关键作用。
