背景:神经科学与计算 数字计算机通常是执行高精度逻辑和数学运算的计算系统。如今,这种复杂系统远远超过了人类的计算和记忆能力。然而,如果我们将人类代理与数字机器进行比较,我们会发现需要进行许多抽象才能进行一对一的比较。这种抽象假设人类的认知过程是完全程序性的并遵循标准逻辑。然而,大多数人类认知行为并不遵循一套明确定义的指令。因此,人类和数字计算机之间的一对一映射可能并不合适。模拟神经形态计算方法可能更适合模仿人类的大脑过程。目标是在神经系统和模拟机器之间建立一对一映射,其中每个生物量都由等效的模拟人工模型建模。对于像人脑这样的架构来说,这可能是一个苛刻的要求。人类的大脑包含
硅是一种无处不在的半导体材料,可用于多种应用,是现代电子和能量收集的基础。硅基微电子,如今更确切地说是纳米电子,将在不久的将来达到 10 纳米以下的技术节点。在这些尺寸下,纳米尺寸效应(例如量子限制、掺杂的统计问题、表面状态等)开始发挥作用,降低性能和可靠性,甚至导致晶体管完全失效。这些纳米尺寸效应中的几种已经在精心制造的 Si 纳米结构上进行了研究,在那里获得的研究结果可能对于规避 FET 达到单纳米尺寸时出现的问题至关重要。此外,Si 纳米结构的非常规和新颖方法也令人感兴趣,因为它们可以提供替代的解决方法,有助于防止未来技术节点实施的进一步延迟,目标是在降低功耗的情况下提供更高的性能。除了电子晶体管之外,硅纳米结构(如纳米线和纳米粒子)还为传感器、量子器件、操纵器、执行器、光电子学、生物标记等领域的各种跨学科应用开辟了全新的前景。由于表面体积比高,硅纳米结构主要由表面决定,因此需要新的物理和化学知识来了解其特性。这些知识尚未完成并转移到现代晶体管技术中。在能量收集领域,硅光伏电池通过用异质结取代扩散的 p/n 同质结(充当载流子选择性和高度钝化(无复合)接触)提高了效率。这一概念允许研究一系列新材料作为接触,但需要精确了解它们与硅的界面特性。尽管有报道称至少在实验室规模的太阳能电池上转换效率令人印象深刻,但尚未找到结合了正确的电子和光学特性并与工业批量生产兼容的理想异质接触。进一步的跨学科研究必须找到或开发将合适的 Si 表面钝化与载流子选择性隧穿、长期稳定性以及可靠且经济高效的制造相结合的材料。
引言硅光子学在过去几十年中已成为高性能光子集成电路(PIC)的成熟技术。标准化的硅光子技术平台受益于公认的制造工艺,基于CMOS Electronics Microfrication的体验,并助长了PIC设计师作为标准图书馆组件的大量高性能设备。中,基于光圈谐振器的附加电源过滤器已证明成功地在波长分层多路复用(WDM)电路中操纵光谱通道。标准硅光子平台中的主动加载过滤器通常会利用热形或等离子体分散效应。热控制的附加电源过滤器提供多种可调性(> 10 nm),但MS响应时间缓慢[1]。他们的高功耗和热串扰限制了可以集成在单个电路中的组件的数量。附加滤波器提供了NS响应时间,没有实质性的串扰[2]。然而,此类过滤器通常具有有限的调谐范围,并且由于组件的活性区域中的光子载体散射而导致过多的光学损失。最近,微机电系统(MEMS)技术已被认为是增强标准硅光子学的绝佳途径。好处包括低功率运行,大型指数可调性以及与标准硅光子平台制造过程的兼容性[3]。迄今为止,通过实现可移动的波导和环/磁盘谐振器[4] - [6]来实现硅光子磁极加载滤波器。尽管如此,此类先前的演示需要定制的光子技术。
便携式、经济高效的气体传感器在众多环境、生物医学和工业应用中越来越受欢迎,但目前的设备仅限于专门的实验室,无法扩展到一般用途。在这里,我们展示了一种光子芯片上灵敏度为十亿分之一的折射率气体传感器,该光子芯片基于用中孔二氧化硅顶包层功能化的氮化硅波导。通过监测集成不平衡马赫-曾德尔干涉仪的输出光谱模式来检测低浓度化学蒸气,该干涉仪的一个涂层臂暴露在气体蒸气中。我们分别对丙酮、异丙醇和乙醇获得了 65 ppb、247 ppb 和 1.6 ppb 的检测限。据我们所知,我们的片上折射率传感器基于光子集成电路提供了前所未有的低气体浓度检测限。因此,我们的研究结果预示着用于现场实时环境监测和医疗诊断的紧凑、便携和廉价设备的实现。
教职员工:Jeff Young、Robert Raussendorf、Lukas Chrostowski 学生、博士后、研究人员:Kashif Awan、Jingda Wu、Xiruo Yan、Donald Witt、Becky Lin、Adam Darcie、Adan Azem、Abdelrahman Afifi、Sebastian Gitt、Matthew Mitchell、Andreas Pfenning、David Roberts 与西蒙弗雷泽大学的 Stephanie Simmons 团队合作。
定向耦合器广泛用于光子集成电路,作为高效片上光子信号路由的基本元件。传统上,定向耦合器完全封装在该技术的波导包层材料中。在本文中,我们展示了一种紧凑的宽带定向耦合器,它完全悬浮在空气中,并在交叉状态下表现出高效的功率耦合。该耦合器是基于 IMEC 的 iSiPP50G 标准平台设计和制造的,基于水氟 (HF) 蒸汽蚀刻的后处理允许释放独立组件。实验证实了 λ = 1560 nm 时的低插入损耗 0.5 dB 和 λ = 1550 nm 时的 1 dB 带宽 35 nm。该定向耦合器体积小巧,仅为 20 µ m × 30 µ m,机械稳定性高,可作为大规模硅光子微机电系统 (MEMS) 电路的基本构建模块。© 2020 美国光学学会
美国专利 9759862 绝热/非绝热偏振分束器 美国专利 9748429 具有减少暗电流的雪崩二极管及其制造方法 美国专利 9740079 集成光学。具有电子控制光束控制的收发器 美国专利 9696492 片上光子-声子发射器-接收器装置 美国专利 9612459 带有微加热器的谐振光学装置 美国专利 9467233 功率计比率 稳定谐振调制器的方法 美国专利 9488854 高速光学相移装置 美国专利 9391225 二维 APD 和 SPAD 及相关方法 美国专利 9366822 具有同时电连接和热隔离的热光调谐光子谐振器 美国专利 9329413 高线性光学调制的方法和装置 美国专利 9268195 使用四波混频产生纠缠光子的方法和装置 美国专利 9268092 导波光声装置 美国专利 9261647在半导体波导和相关设备中产生应变 美国专利 9239431 通过热机械反馈实现谐振光学设备的无热化 美国专利 9235065 适用于差分信号的热可调光学调制器 美国专利 9128308 低压差分信号调制器 美国专利 9127983 用于控制工作波长的系统和方法 美国专利 9083460 用于优化半导体光学调制器操作的方法和设备 美国专利 9081215 硅光子加热器调制器 美国专利 9081135 用于维持光子微谐振器谐振波长的方法和设备 美国专利 9063354 用于稳健无热光子系统的被动热光反馈 美国专利 9052535 电折射光子设备 美国专利 8947764 高速光子调制器设计 美国专利 8822959 光学相位误差校正方法和装置 美国专利 8625939 超低损耗腔和波导散射损耗消除 美国专利 8615173 集成谐振光学装置波长主动控制系统 美国专利 8610994 具有减小的温度范围的硅光子热移相器 美国专利 8600200 纳米光机械换能器 美国专利 8027587 集成光学矢量矩阵乘法器 美国专利 7983517 波长可调光环谐振器 美国专利 7941014 具有绝热变化宽度的光波导装置 美国专利 7667200 热微光子传感器和传感器阵列 美国专利 7616850 波长可调光环谐振器
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。
关于 CMC CMC Microsystems 拥有超过 35 年的提供多项目晶圆服务的经验,涉及一系列技术,包括先进微电子、光子学和 MEMS。CMC 总部位于加拿大,通过提供设计工具、原型设计、增值封装和组装服务以及内部专业知识来降低技术采用的障碍,从而打造出一次成功原型。
