薄膜................................................ .薄膜形成.................................... 6 凝聚和成核........................... 7 薄膜生长.................... ■ ................... 13 岛状阶段................................... 14 聚结阶段................................... 14 通道阶段.................... 即连续膜................................... , 1 6 生长模式........................................ 17 外延生长........................................ 19 薄膜分析技术................................... 2 0 X 射线衍射................................ 20 衍射仪方法................................... 22 薄层电阻................................... 23 四点探针法....... ' .............. 23 扫描电子显微镜.......................................2 6 俄歇电子能谱................................... 2 9 薄膜厚度测量....................... ..34 化学气相沉积.............'.................... 37 CVD 的基本步骤 .............................. 3 8 CVD 的实验参数 .................... 39 沉积温度 ........ 39 气体流速 .............................. 44 晶体取向 .............................. 47 基材位置 .............................. 48 反应物分压。................... 49 表面积 .............................. 49 化学气相沉积反应器 ................ 49 热壁反应器 ............................. 50 冷壁反应器 ............................. 50 大气压反应器 ............................. 50 低压 CVD 反应器。..'................. 52 等离子体增强 CVD 反应器 ............................. 54 光子诱导 CVD 反应器。.................. 55 钨的化学气相沉积 ................. .56 钨的 CVD 反应 .......................... 59 WF 6 的 Si 还原 ................................ 61
NAVID Rabiee化学系,Sharif技术大学,德黑兰,伊朗Shokooh Ahmadvand生物医学工程学院和分子生物学研究中心,伊朗德黑兰Shahid Beheshti医学科学大学医学科学大学,伊朗纳米技术系,伊朗纳米技术研究中心,伊朗纳米技术研究中心,伊朗纳米技术研究中心,医学科学教育师,蒂赫兰大学,艾里师大学,伊里兰斯大学,伊里兰斯大学,伊朗大学,伊朗大学,伊朗大学,艾里河科学研究中心。 (USERN),德黑兰,伊朗Rassoul Dinarvand纳米技术系,德黑兰医学科学大学药学院,伊朗,德黑兰
本研究项目旨在开发一种安全有效的大量 HCDS 液体处理方法。所提出的方法是一个两阶段过程,包括在水中直接水解 HCDS 液体,然后用氢氧化钾 (KOH) 水溶液对水悬浮液中的水解产物进行碱性裂解。在第一阶段,HCDS 液体直接在水中水解。所需的 HCDS 与水的重量比为 1:25。在水解过程中,反应温和,不会产生明显烟雾。在水中水解的液体 HCDS 水解沉积物的红外光谱中仅在 915 cm -1 处观察到一个新峰,这可能归因于簇中存在小的氧化硅分子。经确定,与在潮湿空气中形成的其他水解沉积物不同,在水中形成的液体 HCDS 水解沉积物在环境条件下易与碱性溶液反应,同时释放氢气。在第二阶段,加入 KOH 水溶液 (20 wt%) 以中和悬浮液。KOH 与 HCDS 所需的重量比为 2:1,最终 pH 值约为 12.6。残留沉积物在两小时内完全溶解。关键词:六氯乙硅烷、HCDS、水解沉积物、冲击敏感、处置。
SIAR 人类健康结论总结 3-氨基丙基三乙氧基硅烷 (APTES) 已通过口服、皮肤和吸入途径进行了急性毒性测试。大鼠急性口服 LD 50 范围为 1570 至 3650 mg/kg bw。皮肤 LD 50 为 4.29 g/kg bw,水解物的 4 小时吸入 LC 50 大于 7.35 mg/L。暴露于 APTES 的饱和蒸气六小时并未杀死 5 只雄性或雌性大鼠中的任何一只(LT50 > 6 小时)。肾脏是口服和皮肤暴露毒性的目标器官。APTES 对皮肤和眼睛有严重的刺激性。在 Buehler 对豚鼠的研究中,30 只动物中有 7 只出现皮肤致敏反应。这种材料的水解产物在豚鼠最大剂量试验中不会引起致敏反应。大鼠反复吸入 147 mg/m 3 的 APTES 水解物可吸入气溶胶达四周,导致鳞状化生和微小肉芽肿性喉炎灶。兔子在 9 次重复皮肤剂量 17 或 84 mg/kg bw/day 或 3 次重复皮肤剂量 126 mg/kg bw/day 后未观察到全身毒性;接触部位 NOAEL 低于 17 mg/kg bw/day。在对大鼠进行的 90 天口服(管饲)研究中,APTES 的无可见不良反应水平 (NOAEL) 为 200 mg/kg bw/day。 APTES 已在数项细菌回复突变/Ames 试验、体外 V79 仓鼠肺细胞和中国仓鼠成纤维细胞染色体畸变试验、两项中国仓鼠卵巢细胞 HGPRT 基因突变试验和一项体内小鼠微核试验中进行了测试。体内和体外筛选试验均未发现任何遗传毒性的证据。在对大鼠进行的 90 天口服管饲研究中,在最高剂量水平(600 mg/kg/天)下,未观察到对发情周期和精子发生或生殖器官参数的影响。已确定大鼠口服(管饲)暴露 APTES 后,其发育影响的 NOAEL 值为 100 mg/kg bw/天,根据死亡和胃肠道溃疡计算的母体毒性 NOAEL 为 <0.5 mL/kg。环境 估计的分配系数 Log Kow 为 0.31,估计的水溶性为 7.6x10 5 mg/l;这些值可能不适用,因为该材料水解不稳定。20 o C 时的蒸气压为 0.02 hPa,熔点为 -70 o C,1013 hPa 时的沸点为 223 °C。光降解模型表明,由于与光化学诱导的 OH 自由基发生反应,在大气中的半衰期约为 2.4 小时。但是,由于 APTES 水解不稳定,因此光降解作为一种去除方式不太可能发生,预计不会成为显著的降解过程。APTES 在一系列与环境相关的 pH 值和温度范围内水解不稳定(t 1/2 < 1 小时)
nguyen,H.,Zhang,Q.,Lin,J.,Sagoe-Crentsil,K。,&Duan,W。(2021)。硅烷功能化的GO及其在水泥复合材料中的增强作用。建筑工程杂志,43。https://doi.org/10.1016/j.jobe.2021.103228
在法律规定的某些条件下,图书馆和档案馆有权提供复印件或其他复制品。这些规定条件之一是,复印件或复制品不得“用于除私人学习、学术或研究以外的任何目的”。 如果用户请求或随后将复印件或复制品用于超出“合理使用”范围的目的,则该用户可能要承担侵犯版权的责任,
沉积 (RPCVD) 系统以尽量减少表面损伤。起始表面是二氢化物和一氢化物终止的组合。ALE 实验周期包括用等离子体中的氦离子轰击基底 1-3 分钟以使其解吸,然后在无等离子体激发的情况下,在一定分压范围(1&- 7 Torr 至 1.67 mTorr)、温度范围(250 0 C-400 0 C)和时间范围(20 秒至 3 分钟)内用乙硅烷对表面进行剂量控制,以自限制方式将 Si2H6 吸附在轰击产生的裸露表面 Si 原子上,形成硅基 (SiH3) 物种,从而形成氢终止表面。在 3 分钟的轰击周期内,获得的最大生长量为每周期 0.44 个单层。随着轰击周期时间的减少,每周期的生长量减少,表明氢去除的百分比随着轰击时间的增加而减少。
摘要:硅烷是工业和合成化学中的重要化合物。在这里,我们开发了一种通用方法,用于通过易于使用的氯烷烷的还原激活来合成disilanes,以及线性和环状寡素。水莲阴离子中间体的有效和选择性产生,这些中间体很难通过其他方式实现,可以通过异耦合综合各种新型的寡硅烷。特别是,这项工作为多种功能化的旋风硅烷提供了模块化的合成,这可能会引起具有线性硅烷具有不同特性的材料,但仍然具有挑战性的合成靶标。与传统的wurtz耦合相比,我们的方法具有较温和的条件和改善的化学选择性,扩大了在寡硅烷制备中兼容的官能团。计算研究支持了一种机制,从而在电化学驱动的自由基偏斜机制中实现了在空间和电子上不同的氯烷差异激活的机制。
摘要:将苯并环丁烯改性倍半硅氧烷(BCB-POSS)和二乙烯基四甲基二硅氧烷-双苯并环丁烯(DVS-BCB)预聚物分别引入到由1-甲基-1-(4-苯并环丁烯基)硅环丁烷(4-MSCBBCB)和1-甲基-1-苯基硅环丁烷(1-MPSCB)聚合而成的含苯并环丁烯(BCB)单元的基质树脂P(4-MB-co-1-MP)中,制备出低介电常数(低k)硅氧烷/碳硅烷杂化苯并环丁烯树脂复合材料P(4-MB-co-1-MP)/BCB-POSS和P(4-MB-co-1-MP)/DVS-BCB。通过傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)研究了复合材料的固化过程。利用阻抗分析仪和热重分析仪(TGA)研究了不同比例的BCB-POSS和DVS-BCB对复合材料介电性能和耐热性的影响。复合材料的热固化可以通过BCB-POSS或DVS-BCB的BCB四元环与P(4-MB-co-1-MP)的BCB四元环的开环聚合(ROP)进行。随着BCB-POSS比例增加至30%,P(4-MB-co-1-MP)/BCB-POSS复合材料的5%热失重温度(T 5% )明显升高,但由于POSS中引入了纳米孔,介电常数(k)降低。对于P(4-MB-co-1-MP)/DVS-BCB复合材料,随着DVS-BCB比例的增加,T 5%和k略有升高。以上结果表明,BCB-POSS 比传统填料具有优势,可同时提高热稳定性并降低 k。
2021年4月5日,宾夕法尼亚州莫里斯维尔 - 材料科学领先的创新者Gelest,Inc。今天宣布,其新的BioSafe®HE4005和HE4001抗菌产品已被批准用作美国EPA和FDA的抗菌防腐剂,以抗生素防腐剂,以直接与成品的食品接触,以保留包括成品食品在内的艺术品。BioSafe HE4005和HE4001是使用无甲醇工艺制造的唯一注册的硅烷季铵铵盐(Silane Quat)抗菌剂。像传统的第四纪铵盐(Quats)一样,硅烷量子可以通过物理破坏微生物的细胞膜并在接触时破坏微生物,从而有效地抵抗广泛的微生物。与传统的Quats不同,硅烷量子可以与各种表面结合,因此提供了对微生物定植的持久保护。市场上有几种经过EPA批准的硅烷Quat抗微生物产品,所有这些产品都是由含有甲醇的原材料制造的。因此,成品可以在一部分硅烷果油中包含多达0.5个甲醇的甲醇。供应商不需要报告甲醇