硅是一种无处不在的半导体材料,可用于多种应用,是现代电子和能量收集的基础。硅基微电子,如今更确切地说是纳米电子,将在不久的将来达到 10 纳米以下的技术节点。在这些尺寸下,纳米尺寸效应(例如量子限制、掺杂的统计问题、表面状态等)开始发挥作用,降低性能和可靠性,甚至导致晶体管完全失效。这些纳米尺寸效应中的几种已经在精心制造的 Si 纳米结构上进行了研究,在那里获得的研究结果可能对于规避 FET 达到单纳米尺寸时出现的问题至关重要。此外,Si 纳米结构的非常规和新颖方法也令人感兴趣,因为它们可以提供替代的解决方法,有助于防止未来技术节点实施的进一步延迟,目标是在降低功耗的情况下提供更高的性能。除了电子晶体管之外,硅纳米结构(如纳米线和纳米粒子)还为传感器、量子器件、操纵器、执行器、光电子学、生物标记等领域的各种跨学科应用开辟了全新的前景。由于表面体积比高,硅纳米结构主要由表面决定,因此需要新的物理和化学知识来了解其特性。这些知识尚未完成并转移到现代晶体管技术中。在能量收集领域,硅光伏电池通过用异质结取代扩散的 p/n 同质结(充当载流子选择性和高度钝化(无复合)接触)提高了效率。这一概念允许研究一系列新材料作为接触,但需要精确了解它们与硅的界面特性。尽管有报道称至少在实验室规模的太阳能电池上转换效率令人印象深刻,但尚未找到结合了正确的电子和光学特性并与工业批量生产兼容的理想异质接触。进一步的跨学科研究必须找到或开发将合适的 Si 表面钝化与载流子选择性隧穿、长期稳定性以及可靠且经济高效的制造相结合的材料。
项目合作伙伴,生态与水文学中心(UKCEH),金融地球(FE)和皇家保护鸟类协会(RSPB)已经准备了这项最终报告,以总结对每种工作流的进度,所取得的关键成果,所取得的关键局面,并带来的挑战,项目和关键建议和下一步的工作所面临的挑战和障碍。该最终报告伴随着以下项目可交付成果,其中包括工作流的详细输出:(1)“苏格兰的盐玛什恢复潜力”(Carter等,2024a); (2)“苏格兰的英国盐尔什守则 - 社区参与报告”(Carter等,2024b); (3)“苏格兰盐尔什修复的商业案例和政策建议”(Burden等,2024)。
用于生产Ca的主要碳源材料是植物材料,其形式是从植物材料或植物材料本身(例如马铃薯,木薯,玉米,米饭,米饭,88或其他谷物)中分离出的87碳水化合物(Tong等,2019)。A. Niger CA行业中使用的主要基材是玉米陡峭的89液(Xue等,2021)。美国超过90%的制造商依赖于玉米衍生的90葡萄糖或葡萄糖的发酵(Anastassiadis等,2008)。研究人员研究了其他原料,例如Agro-91工业副产品(例如,茎,果壳,工业液体等),作为92柠檬酸生产的潜在碳源(Tong等,2023),但这些替代底物仅是今天的93(Anastassiadis and Alastsies and and and and and and and and and and and and and and and and and and and and and and。1 94
与熔融盐应用相关:1。在干燥/固化和地质聚合度的程度与开放孔隙度的过程中的水流途径2。最大量的空心浓圈添加与有效的热导率3。地质聚合物矩阵与添加剂之间的界面的稳定性4。na来自激活剂溶液与化学稳定性(阳离子扩散,离子交换等)5。地球聚合物的总体机械性能
发电是由于从化石燃料中释放出的CO 2引起的温室气体(GHG)发射的主要贡献者。此外,电力也是能量向量之一,在不久的将来将进行许多应用[1,2]。作为未来能源系统的目标,必须确保其稳定性和可分配性。在所有可用的人中,太阳能是最合适的替代方案之一:它是干净,丰富且易于获得地球上任何地方的替代品。在不同的替代方案中,集中的太阳能(CSP)与热量储能(TES)结合使用,可以使电力符合峰值需求并解决供应 - 需求 - 需求耦合问题,从而使能量释放及其对电力的转化为必要时,并避免了固有的固有资源可用性的不稳定性[3]。尽管国际能源机构(IEA)估计,CSP将提供2050年产生的全球电力的11%[4],当前运营或开发的工厂主要使用具有基于硝酸盐的材料的明智TES系统。必须探索其他替代方案,因为它们有可能在降低成本,增强热能以及更高/更广泛的运营方面克服商业TES材料的几个缺点。tes与CSP一起,仍然有很长的路要走,他们被认为是一致,健壮,连续和竞争的替代方案。因此,将未来的能源管理和发电组合融合在很大程度上取决于TES材料的未来发展。这项工作的作者需要对最有希望的下一代TES材料进行全面评论,以分析其优势和劣势,总结叙事中发现的最相关的热力学特性,并定义并评估三个不同的关键性能指标(KPI),以帮助最大程度地适合特定的特定选择。
•多粒核石墨是一种合成的复合材料,该复合材料是通过成型或挤出由煤焦油沥青或石油焦炭填充剂制成的糊状物和螺旋粘合剂的糊状物,然后进行热处理和重新爆炸以致密化。
1.量子计算与量子信息。MA Nielsen 和 IL Chuang,剑桥大学出版社 2. Ciaran Hughes、Joshua Isaacson、Anastatsia Perry、Ranbel F. Sun、Jessica Turner,“量子计算的量子好奇者”,Springer,2021 3. Maria Schuld 和 Francesco Petruccione,“使用量子计算机进行机器学习”,第二版,Springer,2021 4. Maria Schuld 和 Francesco Petruccione,“使用量子计算机进行监督学习”,Springer,2018 5. Peter Wittek,“量子机器学习——量子计算对数据挖掘意味着什么”,爱思唯尔。 7. Michael A. Nielsen 和 Issac L. Chuang,“量子计算与信息”,剑桥,2002 年 8. Mikio Nakahara 和 Tetsuo Ohmi,“量子计算”,CRC Press,2008 年 9. N. David Mermin,“量子计算机科学”,剑桥,2007 年 10. https://qiskit.org/
Silicon Sensing Systems 是硅 MEMS 陀螺仪、加速度计和惯性测量系统的市场领导者,专注于高性能、可靠性和价格实惠。凭借可追溯到 100 多年前的惯性传感领域的悠久历史,所有传感器均基于内部专利设计,并在其最先进的 MEMS 代工厂生产。Silicon Sensing 已向全球数千名满意的客户交付了超过 4000 万个传感器,并继续通过技术专长和持续创新来提高性能。
2.1硬制造考虑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.1.1传统MEMS材料。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.1.2硅。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.2光刻。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 26 2.2.1掩码创建。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 27 2.2.2晶圆清洁。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 28 2.2.3二氧化硅热硅。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 2.2.4抵抗应用。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 2.2.5紫外线曝光。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 2.62.6开发。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>35 2.2.7技术考虑。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>36 2.3蚀刻方法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。38 2.3.1可用技术。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.3.2等离子体蚀刻(PE)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.3.3反应离子蚀刻(RIE)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 2.3.4物理溅射(PS)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.3.5离子束铣削(IBM)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.3.6反应性离子梁蚀刻(RIB)和化学辅助离子束蚀刻(Caibe)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.4薄膜沉积过程。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 45 2.4.1物理蒸气沉积(PVD)。 。 。42 2.3.5离子束铣削(IBM)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 2.3.6反应性离子梁蚀刻(RIB)和化学辅助离子束蚀刻(Caibe)。。。。。。。。。。。。。。。。。。。。。。43 2.4薄膜沉积过程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45 2.4.1物理蒸气沉积(PVD)。。。。。。。。。。。。。。。。。。。。。。。。45 2.4.2化学蒸气沉积。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 2.5离子植入。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 2.6湿泡表面微加工。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。54 2.6.1硅晶片。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55 2.6.2各向同性和各向异性蚀刻。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 57 2.6.3选择硅晶片方向。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 58 2.6.4具有牺牲层的3D结构。 。 。 。 。 。 。 。 。 。 。 。 。54 2.6.1硅晶片。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 2.6.2各向同性和各向异性蚀刻。。。。。。。。。。。。。。。。。。。。。。。。57 2.6.3选择硅晶片方向。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 58 2.6.4具有牺牲层的3D结构。 。 。 。 。 。 。 。 。 。 。 。 。57 2.6.3选择硅晶片方向。。。。。。。。。。。。。。。。。。。。。58 2.6.4具有牺牲层的3D结构。 。 。 。 。 。 。 。 。 。 。 。 。58 2.6.4具有牺牲层的3D结构。。。。。。。。。。。。。。。。。。。。。。60 2.7干式表面微加工。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。63 2.7.1深反应离子蚀刻(DRIE)。。。。。。。。。。。。。。。。。。。。。。。63 2.7.2单晶反应性etking和金属化(尖叫)64 2.7.3 Liga和UV-Liga。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65 2.8己二。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65 2.9电镀。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65 2.10底物键合。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。68