土地和海洋之间红树林生态系统的独特定位使它们在氮循环中至关重要。硝化在氮循环中的作用对于提供红树林易于吸收的氮化合物很重要。然而,红树林地区的硝化过程和硝化细菌尚未全面理解。这项研究的主要目的是通过进行系统的综述,对红树林沉积物中的硝化细菌进行全面分析。系统评价和荟萃分析方法的首选报告项目被用作有助于系统地报告评论的指南,并具有流程图以显示选择相关研究的过程。数据收集是通过使用6个数据库和包括Scopus,PubMed,ResearchGate,Google Scholar和Springer在内的期刊搜索引擎进行的,以实现更全面的发现。这项研究采用了广泛认可且常用的技术,通过首先识别人口,干预,比较和结果来以重点方式定义评论的范围。这项研究确定了358项研究,筛查后审查中包括了31项研究。基于筛查结果,关于红树林沉积物中硝化细菌的研究在地理上仅限于印度尼西亚,越南,泰国,中国,墨西哥,美国,印度和沙特阿拉伯等多个国家。氨氧化细菌通常是主要的群体,但是各种硝化细菌基团在不同的红树林环境中分布多样。这项研究表明,在红树林沉积物中硝化细菌之间存在高度的多样性,五个不同的组鉴定出来:氨氧化细菌,亚硝酸盐氧化细菌,厌氧菌细菌和comammammox细菌,最近鉴定出的组。在进行氮化合物的变化时,从硝化过程的不同步骤中使用功能基因的硝化作用,例如硝酸氨基酶,单加氧酶亚基A,亚硝酸盐氧化剂氧化液亚基A,硝酸盐亚基亚基,硝酸盐还原链链酶,一氧化氧酶,氮的再生氮,氢氮合酶,肼氧化还原酶和羟胺氧化还原酶基因。这项研究还表明了红树林沉积物中的植被类型和硝化细菌的分布。这些沉积物的深度通常从0到60厘米不等,大多数样品以0到20厘米的深度采集。采样位置的植被类型由Kandelia Candel,Avicennia Marina,Kandelia Obovata和Rhizophora Mangle的种类主导。关于硝化细菌在红树林沉积物中的限制为深入研究提供了机会。这项全面的综述提供了对硝化细菌的多样性和传播的深入概述,强调了它们在氮循环中的作用,并强调了发现红树林沉积物中新硝化细菌的潜力。
过渡到圣彼得堡大学音乐学院的钢琴研究。经过多年的学术挫败感,他加入了圣彼得堡大学的实验室。在那里他追求自然科学,并最终获得了化学和植物学的硕士学位。(1)虽然微生物学不是科学家的新概念,但他们对微生物的代谢多样性及其与地球的关系知之甚少。Winogradsky的突破之一是发现自养细菌。(2)通过他在斯特拉斯堡大学的安东·德巴里(Anton Debary)实验室的工作,他确定了一个非凡的微生物群体,能够利用无机化合物作为能源。Winogradsky见证了乞g和硫酸细胞中硫颗粒的外观和消失,他将这些生物称为“ Chemolithotrophs”。这些化学物质可以驱动元素能量周期,例如氮和硫。(1)这一开创性的发现挑战了所有生命仅依赖于光和有机化合物来维持生存的普遍观念。在1888年,Winogradsky在Debary实验室的努力即将结束,现在是时候开始他职业生涯的下一阶段了。氮在微生物生命周期中的作用。Winogradsky在苏黎世大学的卫生研究所,证实了英国化学家罗伯特·沃灵顿(Robert Warington)关于细菌对无机氨和亚硝酸盐氧化转化的理论。(1)Winogradsky鉴定了多个硝化细菌属,其中一些是硝化细菌,硝基杆菌,硝基瘤和硝基球菌。(3)当他于1899年回到圣彼得堡时,Winogradsky确定了强制性的Anaerobe梭子座巴氏菌,这证明某些生物可以修复大气氮。
今天,对水产养殖产量的需求不断增长,伴随着各种挑战,例如疾病,育雏症改善,驯化,合适的颗粒的发展和喂养方法,孵化场技术和水质管理。因此,据报道,益生菌的使用是抗生素,其他化学治疗剂以及其他替代成分的其他补充剂的理想替代品。益生菌的主要利益作用包括增强疾病和抗压力,免疫力,促进生长和繁殖,改善消化,提供多种营养以及水微生物组成的增强。为了确保安全性,所提供的益生菌必须是非侵入性和非致病性的。直接或与替代材料(例如植物蛋白质饮食,维生素,微藻,发酵产品等)结合使用益生菌,已被证明可以改善水生动物的健康和生长,并为行业的可持续性提供显着的利益。倡导一种系统的方法来进行创新的研究以发掘新的推定菌株,这对于确保可持续的益生菌使用量非常重要,因此可以帮助持续发展水产养殖行业,尤其是在中国。在中国发现的益生菌的一些例子主要是光合细菌(PSB),它们是能够光合作用,拮抗细菌的自养细菌(pseudoalteromonas sp。,pseudoalteromonas sp。,flavobacterium sp。,Alteromonas sp。,Alteromonas sp。,phaeobacter sp。),改善水质的细菌(硝化细菌,硝化细菌等。),在消化过程中贡献营养和酶的细菌(乳酸菌,酵母等。),bdellovibrio和其他益生菌。本综述还着重于益生菌在水产养殖中的潜在使用,尤其是在中国,以及益生菌的未来作用。
在水生生态系统的水下是一个充满生命的微观宇宙,在维持这些环境的微妙平衡中起着至关重要的作用。水生微生物学探讨了各种水体中微生物的多样性和功能,从广阔的海洋到最小的淡水池塘。在水生环境中,最丰富,最多样化的微生物群是营养循环的关键参与者。例如,硝基瘤和硝化细菌参与硝化过程,将氨转化为氮气中的硝酸盐。一些细菌也有助于有机物的降解,在营养回收中起重要作用。从微观浮游植物到较大的宏观形式,藻类是带有光合作用的阳光的主要生产者。硅藻,鞭毛藻和绿藻是水生食物网的重要贡献者,通过生产有机化合物为各种生物提供了能量。这些单细胞真核生物是水生生态系统中重要的消费者。鞭毛,纤毛和变形虫在调节细菌种群,回收养分以及作为较高营养水平的食物方面起着作用。病毒虽然不是严格归类为生物体,但在水生环境中很丰富,并影响微生物种群。噬菌体,感染细菌的病毒可以调节细菌群落,影响养分循环和微生物多样性。水生微生物对于包括碳,氮和磷循环在内的营养循环过程至关重要。细菌和藻类有助于释放有机物的细分,从而释放出其他生物可以利用的营养。藻类和蓝细菌进行光合作用,将阳光转化为化学能。这个过程不仅支持这些微生物的生长,而且还为其他水生的能源提供了主要的能量
摘要 - 不同的微生物群存在于雨林和红树林植被土壤类型中,但对其人口和多样性的了解不多,因此,进行了这项研究,以评估和比较微生物的季节性变化,以及在尼日利亚州河流州哈科尔特港的两种植被土壤中的植被类型的多样性。在干燥和雨季中收集了顶部土壤(0-15cm)和地下土壤(15-30厘米)的样品,并进行标准分析。cow豆在栽培之前和之后的不同土壤和微生物种群中也进行了种植。结果表明,在干旱季节,红树林和雨林植被类型的微生物种群比其他季节都显着(P≤0.05)。微生物种群的范围是:总杂质细菌7.8-25.0 x105cfu/g和6.6-22.1 x105cfu/g;总核真菌2.0-5.4 x103cfu/g和0.3-0.9 x 103 cfu/g;放线菌0.2-3.7x103cfu/g和0.2-0.9x103cfu/g;硝化细菌0.2-6.9 x102 cfu/g和0.2-5.0x102cfu/g;氮固定细菌(0.2-1.3x102cfu/g和0.2-1.5x102cfu/g)分别用于雨林和红树林土壤。在所有季节中,总共分离出33种细菌,2种放线菌和15种真菌。芽孢杆菌是最主要的细菌,而曲霉菌是两种植被类型和所有季节中最为主要的真菌。牛豆种植和季节性变化后,不同土壤中的微生物种群增加了微生物多样性和种群。索引术语 - 植被,土壤,特征,细菌,真菌
在上个世纪,氮(N)和磷(P)输入在人类冲击的分水岭中显着增加,在水污染,富营养化,富营养化,绿色之家气体的损失,生态系统功能和生物损失(Batty)(Battye)中,对水污染,富营养化,绿色房屋气体的损失,2017年;等,2018)。流域的营养预算提供了人们对人为来源的相对重要性的洞察力,即河流负载的主要决定者(Romero等,2021),但是在下游或及时输出的营养量与水力学动态动力学和内部BioCege Cycling紧密相连。在土壤和水域中的几种温度依赖性(例如,有机物矿化和生物晶状体化学N途径)或降水依赖性(例如径流和侵蚀过程)发生在景观之间,并塑造了养分动员的时间和宏观的时间,而Baron等人(Baron等人,2013年,2013; Wagena et; Wagena et al。由于富营养化和硝酸盐(第3--)污染,世界各地的许多河流都承受着压力,但是它们的生态后果与Climate变化的影响和结果相互作用重叠,可能是复杂的,尚未完全理解(Rozemeijer等人,2021年; Meerhoff等,2021; Meerhoff等,20222; 2022; 2022; 2022; 2022222222222。河网络相对于处理人为n输入的表面区域而言,其表面积非常重要。温暖可能会影响反硝化,这既是参与活性的直接效应,又是温度对氧化还原条件的间接作用。气候变化可能会影响河流的生物地球化学动态和生态功能,通过影响从陆地生态系统中营养的数量和时机,通过更改稀释能力以及内部耗散和回收过程的稀释能力以及稀释能力的程度(Goyette等,2019; abily et al。; aby et an and and; aby and an。在全球范围内,沿着陆地水平的水陆连续体去除了流域中产生并转移到河流的75%以上(Seitzinger等,2006; Howarth等,2012)。在这些系统中,通过将硝酸盐(NO 3-)减少到氮气(N 2)下,微生物DEN- ITRIFICATY在低氧 - 氧化剂条件下通过硝酸盐(NO 3-)进行了永久性n(Birgand等,2007; Reisinger et al。,2016; Hill,2023)。较高的水温可降低氧溶解度,并增强沉积物氧呼吸,限制氧渗透深度并导致刺激非硝化作用的协同作用(De Klein等,2017; Velthuis and Veraart,Veraart,2022)。在强烈取决于硝化细菌的NO 3-供应的情况下,在较高的水温下氧气降低可能导致硝化降低,因此降低了硝化剂,因此降低了硝化(Pina-ochoa和pina-ochoa andálvarez-cobelas,2006; Birgand et al。,2007年)。同时,多种非生物和生物过程(例如吸附,颗粒沉积,腹膜和植物浮游生物的摄取)负责河流沉积物中的p保留,并解释了该元素的临时存储(Yuan等,2018; Goyette et al。,2019年)。总体而言,河流在高度动态的环境中积极转化,暂时存储并永久地移动营养