Loading...
机构名称:
¥ 1.0

在上个世纪,氮(N)和磷(P)输入在人类冲击的分水岭中显着增加,在水污染,富营养化,富营养化,绿色之家气体的损失,生态系统功能和生物损失(Batty)(Battye)中,对水污染,富营养化,绿色房屋气体的损失,2017年;等,2018)。流域的营养预算提供了人们对人为来源的相对重要性的洞察力,即河流负载的主要决定者(Romero等,2021),但是在下游或及时输出的营养量与水力学动态动力学和内部BioCege Cycling紧密相连。在土壤和水域中的几种温度依赖性(例如,有机物矿化和生物晶状体化学N途径)或降水依赖性(例如径流和侵蚀过程)发生在景观之间,并塑造了养分动员的时间和宏观的时间,而Baron等人(Baron等人,2013年,2013; Wagena et; Wagena et al。由于富营养化和硝酸盐(第3--)污染,世界各地的许多河流都承受着压力,但是它们的生态后果与Climate变化的影响和结果相互作用重叠,可能是复杂的,尚未完全理解(Rozemeijer等人,2021年; Meerhoff等,2021; Meerhoff等,20222; 2022; 2022; 2022; 2022222222222。河网络相对于处理人为n输入的表面区域而言,其表面积非常重要。温暖可能会影响反硝化,这既是参与活性的直接效应,又是温度对氧化还原条件的间接作用。气候变化可能会影响河流的生物地球化学动态和生态功能,通过影响从陆地生态系统中营养的数量和时机,通过更改稀释能力以及内部耗散和回收过程的稀释能力以及稀释能力的程度(Goyette等,2019; abily et al。; aby et an and and; aby and an。在全球范围内,沿着陆地水平的水陆连续体去除了流域中产生并转移到河流的75%以上(Seitzinger等,2006; Howarth等,2012)。在这些系统中,通过将硝酸盐(NO 3-)减少到氮气(N 2)下,微生物DEN- ITRIFICATY在低氧 - 氧化剂条件下通过硝酸盐(NO 3-)进行了永久性n(Birgand等,2007; Reisinger et al。,2016; Hill,2023)。较高的水温可降低氧溶解度,并增强沉积物氧呼吸,限制氧渗透深度并导致刺激非硝化作用的协同作用(De Klein等,2017; Velthuis and Veraart,Veraart,2022)。在强烈取决于硝化细菌的NO 3-供应的情况下,在较高的水温下氧气降低可能导致硝化降低,因此降低了硝化剂,因此降低了硝化(Pina-ochoa和pina-ochoa andálvarez-cobelas,2006; Birgand et al。,2007年)。同时,多种非生物和生物过程(例如吸附,颗粒沉积,腹膜和植物浮游生物的摄取)负责河流沉积物中的p保留,并解释了该元素的临时存储(Yuan等,2018; Goyette et al。,2019年)。总体而言,河流在高度动态的环境中积极转化,暂时存储并永久地移动营养

气候变化对PO河中富营养化的影响(...

气候变化对PO河中富营养化的影响(...PDF文件第1页

气候变化对PO河中富营养化的影响(...PDF文件第2页

气候变化对PO河中富营养化的影响(...PDF文件第3页

气候变化对PO河中富营养化的影响(...PDF文件第4页

气候变化对PO河中富营养化的影响(...PDF文件第5页