2.5能源使用(气和用电)...............................................................................................................................................................................................................................................................................................................................................................................................范围2排放中可再生电力的处理........................................................................................... CarbonNeutral ® certification.........................39 2.5.4 How to report GHG emissions from green gas certificates.................................................39 2.6 Aviation..........................................................................................39 2.6.1 Calculating the climate impact of aviation.............................39 2.6.2 Determining aviation emissions from flight distances.......................................................................41 2.7 How to report GHG emissions from carbon neutral services within a corporate GHG inventory.............................41 2.8 Using environmental product declarations (EPDs) for CarbonNeutral ® products..................................................42
摘要:最近,人们对使用各种“催化剂”的兴趣日益浓厚,以进一步丰富逆硫化反应的基质范围。虽然关于这些催化剂的作用机理已经有了若干提案,但是这些混合物中硫的形态仍然难以捉摸。作为了解这些催化剂何时以及是否适用的关键要素,我们试图通过尝试表征硫的形态来阐明二硫代氨基甲酸盐物质在逆硫化反应中的作用。无论是否含有金属二硫代氨基甲酸盐、二乙基二硫代氨基甲酸钾 (K-DTC),含有不同官能团与硫的各种基质的反应效率都表明形成了快速波动的硫形态,最重要的是,存在阴离子硫。最后,根据我们的研究结果,提出了一些关于使用二硫代氨基甲酸盐催化剂的最佳实践的建议。
更严格的法规要求炼油厂在努力提高效率的同时生产出更高质量的产品。在过去十年中,美国、欧洲、中国和印度等地的国家监管机构已经实施或计划实施汽油和柴油中总硫含量低至 10 ppm 的要求。增加加氢处理和改变原油成分是降低成品硫含量的一些手段。加氢处理催化剂的寿命取决于装置的进料和操作。加强监测对于满足这些要求和提高效率至关重要。事实证明,WDXRF 是一种快速、简单且精确的测量烃流中硫含量的方法。为了达到较低的硫含量,炼油厂必须投资购买新设备或升级设备、修改操作或两者兼而有之。无论如何,这都会增加生产柴油和汽油的成本。
如图 1a 所示,采用熔盐蚀刻和功能基团置换法,用 ZnCl₂ 和 Li₂S 从 Ti₃AlC₂ MAX 相合成 Ti₃C₂S₂ MXene。首先,将 Ti₃AlC₂ MAX 与 ZnCl₂ 混合,并在 500°C 下退火,生成 Ti₃C₂Cl₂ MXene。随后,在 800°C 下用 Li₂S 将 –Cl 基团替换为 –S 基团,从而获得 Ti₃C₂S₂ MXene。首先使用 X 射线衍射 (XRD) 分析验证样品的身份和晶体结构。结果表明,Ti₃C₂Cl₂ 和 Ti₃C₂S₂ MXene 中 Ti₃AlCl₂(JCPDS:#52–0875)的 (002) 峰强度均向较低角度移动(图 S1),表明晶体结构发生了显著变化,MAX 相成功剥离。Ti₃C₂Cl₂ 和 Ti₃C₂S₂ MXene 的 (002) 峰位于 8.96° 和 7.93°,分别对应层间距 9.82 Å 和 11.14 Å。使用扫描电子显微镜 (SEM) 检查 Ti₃C₂S₂ MXene 的形态,如图 1b-d 所示。SEM 图像证实 MXene 剥离成 2D 层状手风琴状结构。元素映射分析 (EDS) 进一步证实了 Ti、C、Cl 和 O 元素的均匀分布(图 1e)。这些结果最终证明了 Ti₃C₂S₂ MXene 的成功合成。
作者:ML De Sciscio · 2022 · 被引用 7 次 — 理论评估。基于硫的反应作为生物抗氧化防御的模型。Int.J. Mol.Sci.2022, 23, 14515。 https://doi.org/10.3390/。
Vito Genna 1,2,Javier Iglesias 2,Laura Reyes-Franco 1,Nuria Villegas 1,Kevin Guckian 3,Punit Seth 4,Brad Wan 4,Cristina Cabrero 5,Montserrat Terrazas 1.6 * div>
N 4至20MW尺寸安装在阿布扎比的11个变电站中。n Abu Dhabi具有1GW的PV,可在2026年延长6.5GW PV。n 5.6 GW核电运行计划从2026年开始。n储备量对于频率控制和能量转移是必需的。
适当的土壤管理可以维持和改善整个生态系统的健康。适当的土壤管理需要对其特性进行适当的表征,包括土壤有机质 (SOM) 和土壤水分含量 (SMC)。与传统方法相比,基于图像的土壤表征显示出强大的潜力。本研究比较了 22 种不同的监督回归和机器学习算法的性能,包括支持向量机 (SVM)、高斯过程回归 (GPR) 模型、树集合和人工神经网络 (ANN),在实验室环境下用数码相机拍摄的土壤图像中预测 SOM 和 SMC。共提取了 22 个图像参数,并分两步用作模型中的预测变量。首先使用所有 22 个提取的特征开发模型,然后使用 SOM 和 SMC 的六个最佳特征子集。饱和度指数(红色指数)是 SOM 预测的最重要变量,对比度(中位数 S)是 SMC 预测的最重要变量。颜色和纹理参数与 SOM 和 SMC 都表现出高度相关性。结果显示,对于使用六个预测变量的验证数据集,图像参数与实验室测量的 SOM(使用立体派的 R 2 和均方根误差 (RMSE) 分别为 0.74 和 9.80%)和 SMC(使用随机森林的 R 2 和 RMSE 分别为 0.86 和 8.79%)之间存在令人满意的一致性。总体而言,GPR 模型和树模型(立体派、RF 和增强树)最能捕捉和解释本研究中 SOM、SMC 和图像参数之间的非线性关系。