摘要:在区块链技术的快速发展的景观中,确保数据的完整性和安全性至关重要。这项研究深入研究了默克尔树的安全方面,这是区块链体系结构(例如以太坊)中的基本组成部分。我们认真研究了默克尔树对哈希碰撞的敏感性,这是一个潜在的漏洞,对区块链系统内的数据安全构成了重大风险。尽管使用了广泛的应用,但尚未对默克尔树木的碰撞抵抗及其对预先攻击的稳健性进行彻底研究,从而在对区块链安全机制的全面了解方面存在明显的差距。我们的研究努力通过理论分析和经验验证的细致融合来弥合这一差距。我们考虑了诸如树木内的哈希长度和路径长度等各种因素,仔细检查了默克尔树中根碰撞的可能性。我们的发现揭示了路径长度的增加与根部碰撞的概率增加之间的直接相关性,从而强调了潜在的安全漏洞。相反,我们观察到哈希长度的增加大大降低了碰撞的可能性,突出了其在强化安全性中的关键作用。我们的研究中获得的见解为区块链开发人员和研究人员提供了宝贵的指导,旨在增强基于区块链的系统的安全性和运营功效。关键字:区块链安全,默克尔树,哈希碰撞,数据完整性,区块链数据验证,碰撞电阻。
使用戏剧软件,我们能够估计2020年,2025年,2029年和2036年的216个非构造航天器的碰撞概率和超过16,000个星座卫星。5下面的小提琴图显示了每年的碰撞概率的分布。小提琴图只是镜像统计分布。它表明,在2020年,碰撞概率集中在分布的上端(概率大于1000中的1000分之一),较长的概率很长。此分布会随着时间的流逝而变化,显示出较高概率向分布的上端积累。这还表明,随着时间的推移,最大概率随着时间的推移而增加(由于2025年太阳能活动的峰值,从2020年到2025年减少了)。
使用戏剧软件,我们能够估计2020年,2025年,2029年和2036年的216个非构造航天器的碰撞概率和超过16,000个星座卫星。5下面的小提琴图显示了每年的碰撞概率的分布。小提琴图只是镜像统计分布。它表明,在2020年,碰撞概率集中在分布的上端(概率大于1000中的1000分之一),较长的概率很长。此分布会随着时间的流逝而变化,显示出较高概率向分布的上端积累。这还表明,随着时间的推移,最大概率随着时间的推移而增加(由于2025年太阳能活动的峰值,从2020年到2025年减少了)。
我们使用纠缠光子研究了量子键分布的安全性,重点是Bennett-Brassard 1984〜BB84的两光子变化!Bennett,Brasard和Mermin〜BBM92于1992年提出的协议!。我们提供了适用于现实来源的安全证明,以及可以放置在两个接收器实验室之外的不可信来源。证明仅限于单个窃听攻击,并假定检测设备是可信赖的。我们发现,BBM92协议的平均碰撞概率与带有理想单光子源的BB84协议的平均碰撞概率相同。这表明BBM92对光子分裂攻击没有类似物,并且可以在两个接收器之间放置源而不会改变碰撞概率的形式。然后,我们比较两种方案的通信速率是距离的函数,并表明在存在现实的实验性缺陷的情况下,BBM92具有更长的通信距离,最高170 km。最后,我们提出了一个基于纠缠交换的计划,该方案可能导致更长的距离通信。该方案中的限制因素是通道丢失,该渠道丢失在更长的距离时施加了非常缓慢的通信速率。
5.分离函数推导 ................................................................................................ 72 5.1.碰撞风险建模 ................................................................................................ 72 5.2.数据分析 ............................................................................................................. 77 5.3.性能指标 ............................................................................................................. 93 5.4.碰撞概率 ............................................................................................................. 102 5.5.区间分析 ............................................................................................................. 111
航天器运营商在确定是否有必要采取防撞机动时,会采用不同的近距离指标和防撞距离。通常,航天器处于低风险轨道状态的运营商可能会以很少的燃料或运营成本实施极其保守的防撞策略,而航天器在高风险轨道状态运行的运营商则被迫采取经济的防撞策略,以避免耗尽燃料预算并给飞行动力学团队带来过重负担。不幸的是,虽然存在许多防撞机动“通过/不通过”标准,但运营商通常无法获得 SSA 信息和 SSA 精度,而这些精度对于填充最适合他们的标准是必不可少的。此外,用于填充这些标准的算法有时包含无效假设,例如在需要更复杂的公式时使用线性碰撞概率和球形物体形状近似值。虽然存在一些估计卫星物体尺寸的来源,但会合时的相对姿态可能不确定甚至不可用,特别是对于所谓的“次要”或会合物体。空间数据协会 (SDA) 是一个由全球卫星运营商组成的协会,致力于确保可控、可靠和高效的空间环境,该协会已在其成员中开展了一项调查,以收集有关其会合评估运营概念的数据。这些包括防撞通过/不通过指标、防撞目标和运营约束。任何试图向运营商提供有意义的会合评估服务的实体都可以使用这些数据来设计服务要求。本文评估了与这些不同的“通过/不通过”指标相关的空间态势感知 (SSA) 数据的各种定位精度要求,这些指标用于空间交通协调 (STC) 和空间交通管理 (STM) 的会合缓解过程。这些指标包括最接近时 (TCA) 的错失距离、组件化错失距离(例如,TCA 径向分离,即使在轨道内或轨道外分离或不确定性未知的情况下也能防止碰撞),以及最大碰撞概率和估计的真实概率。需要探讨的另一个关系是碰撞概率对 TCA 处卫星方向和配置/形状的依赖关系。由于不了解方向,计算碰撞概率时必须做出某些假设。一种常见的做法是用一个封装球体来近似航天器的硬体。这种一刀切的方法无需确定方向,但会导致物体体积被高估,概率被高估,除非两颗卫星实际上都是球体。为了产生更具代表性的概率,我们使用卫星的尺寸来定义一个包围的矩形框。通过投射比球体更小的区域,这种方法可以更准确地描绘实际的碰撞威胁,但缺点是必须在一定程度上准确了解盒子的方向。但即使选择产生最大可能覆盖范围的方向,盒子形状的概率也会低于球体。为了解决这个问题,我们估计了一系列对应于一系列方向的碰撞概率值,从中我们可以探索给定碰撞概率阈值所需的态度知识和位置精度之间的相互关系。
•卫星计算连接的碰撞概率(PC)•如果较高的PC事件,计划避免碰撞(COLA)操作•进行COLA操作•一旦通过接地枢纽进行筛选,则进行COLA操纵•操纵责任声明•操纵轨迹的意图和未来通过接地枢纽的范围•通过接地式的操作型操作员,而不是自动化的操作员,而不是跨地面操作员,而不是实地操作员,而不是实地操作员,则型号的运营商<
开发有效的感知和避让系统是无人机系统 (UAS) 在国家空域运行的关键挑战。一个关键问题是利用适用于 UAS 的轻型、低成本传感器,在足够的范围内探测潜在目标,以降低碰撞概率。我们提出了一种基于最坏情况碰撞遭遇几何形状设计最小所需感知范围的闭式分析方法。使用 500 英尺的最小安全距离和几种不同飞机的已知速度,使用松弛参数 δ r = 0 . 0354 ,发现这个最小所需感知范围约为 1.861 公里。我们通过描述实现所需最小感知范围的雷达传感器原型来证明这是一个可行的结果。
低地球轨道 (LEO) 空间物体未来位置的不确定性受到热层密度不确定性的影响,而热层密度的不确定性在活跃的空间天气条件(例如地磁暴)下可能会发生显著变化。LEO 中物体数量的急剧增加以及随之而来的空间交通管理 (STM) 面临的挑战促使我们研究新型概率密度模型 HASDM-ML 和 MSIS-UQ,以及它们在更现实的卫星状态不确定性量化方面的潜力。在代表 SpaceX 的 Starlink 和 Planet 的 Dove 星座的轨道高度的“安静”和“风暴”大气模型中,研究了几种“近距离”用例。使用最接近时间和碰撞概率等指标来检查这些新型密度模型的影响,并讨论了完成这些模型评估所需的未来工作建议。
客观评估 AC 危险,那么对于 ATC 来说,情况就有所不同。评估飞机碰撞概率的大多数尝试都是使用不同的模型 [6-8],这些模型都包含有关近距离碰撞的统计数据及其前提 [1, 3, 9-12] 和不同的理论概念 [13-18]。但手册 [7, 8] 描述的模型主要支持程序分离。相应的横向和垂直分离模型不考虑 ATC 的任何干扰。基于水平间隔的纵向分离模型考虑到了这种情况,但它们仅在低数据更新率下有效。此外,最小纵向分离足以成功干扰 [6]。这些统一原则(AC 碰撞的风险建模)没有考虑由于利用误差导致的碰撞风险模型中观测的高数据更新率方面。提到这一点只是为了强调,给定的原则仅适用于 Doc 9689 和 Doc 9574 中的碰撞风险模型,并且它们都没有考虑雷达观测期间利用误差的建模 [6]。事实上,正在研究中的类似模型也具有相同的限制[13-18]。