1个国家关键实验室的结构分析,优化和CAE软件的工业设备软件; National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou 450002 , China 2 China State Key Laboratory of Powder Metallurgy , Central South University , Changsha 410000 , China 3 School of Electronic Engineering , North China University of Water Resources and Electric Power , Zhengzhou 450046 , China 4 Complex Conditions of High-end Tire Technology Innovation Center , Shuguang Rubber Industry Research & Design Institute Co.,Ltd,Guilin 541004,中国5综合复合材料实验室,机械与土木工程系,诺森比亚大学,纽卡斯尔,纽卡斯尔,NE1 8st,英国第8届,英国6号,台风大学,台机科学学院,box 11099,TAIF 21944,沙特阿拉伯7 Shaanxi大分子科学与技术的主要实验室,化学与化学工程学院,西北理工大学,西北理工大学,西北710072,710072,中国化学和科学系,北中国北部科学系,北中国科学系,北中国。纳斯尔市Al-Azhar大学11884,开罗,埃及
摘要:在聚合物材料行业中,热固体和相关复合材料在橡胶和塑料的生产中发挥了重要作用。其中的一个重要子集是带有碳增强的热固性复合材料。碳填充剂和纤维的掺入可为聚材料提供改善的电气和机械性能,以及其他好处。然而,由于其棘手的性质,共价交联的热销网络提出了回收和再生的重大挑战。引入玻璃体材料为生产可生物降解和可回收热的途径开辟了新的途径。碳增强玻璃二聚体复合材料是用于具有吸引人物理特性的高性能,持久材料,可回收和加工的能力以及对刺激唯一反应的其他特征。本文总结了过去几年中碳增强玻璃体复合材料的发展。首先,提供了玻璃二聚体的概述和用于制备碳纤维增强玻璃体复合材料的方法。由于此类复合材料的玻璃二聚体性质,重新处理,治愈和回收是可行的方法,可以极大地延长其使用寿命。这些方法得到了彻底的解释和总结。结论是我们开发基于碳的玻璃体复合材料的预测。
摘要。随着航空航天业寻求传统航空的可持续替代品,电动飞机已成为减少碳排放和对化石燃料依赖的有希望的解决方案。这一转变的核心是开发和整合先进材料,以提高这些下一代飞机的性能和效率。复合材料具有多种重要能力,包括耐疲劳、耐腐蚀和制造轻质部件,同时将可靠性的损害降至最低等。纳米复合材料是复合材料中的一种材料,与标准复合材料相比,其机械性能更优越。纳米复合材料在航空航天领域的应用目前遇到了研究空白,主要是在确定未来的应用范围方面。本文回顾了碳纤维复合材料和纳米复合材料在电动航空中的关键作用,强调了它们对飞机设计、电池集成和整体可持续性的变革性影响。通过提供无与伦比的强度重量比、卓越的热管理和创新的结构可能性,这些材料显着提高了电动飞机的性能。此外,本文还讨论了材料技术的进步,包括高温复合材料、混合复合材料和纳米复合材料,并讨论了复合材料应用的挑战和未来方向。本文强调了复合材料在实现更环保、更高效、技术更先进的航空航天工业方面的关键作用,标志着朝着可持续航空运输迈出了重要一步。
鉴于生物过程扩大规模的必要性,本研究旨在探索以半连续模式种植的三个海洋蓝细菌和一个财团的潜力,作为I)连续富含外多糖的生物量的绿色方法,富含外多糖的生物量生产并ii)从MONO,NI,NI,MONO和MONO的阳性收费中的MONO和MONO的阳性收费中的MONO和MONO索取。为了确保细胞和释放的外多糖的有效性,每周收获的整个培养物被限制在透析管中。结果表明,所有测试的蓝细菌对单声道和三级系统的CU具有更强的亲和力。尽管每克生物量除去的金属量随着较高的生物吸附剂剂量降低,但产生了越溶的碳水化合物,金属摄取量就越大,强调了释放的外多糖在金属生物吸附中的关键作用。据此,dactylocopopopsis salina 16som2显示出最高的碳水化合物产生性(142 mg l -1 d -1)和金属摄取(84 mg cu g -1生物量),代表有前途的候选者,用于进一步研究。在这里报道的海洋蓝细菌的半连续培养可确保可计划生产具有高金属去除和恢复潜力的富含外多糖的生物吸附剂,即使是从多金属溶液中,也是氰基杆菌的工业应用中迈出的一步。
frp(纤维增强聚合物)复合材料由于其低密度,高强度,高温耐药性和耐腐蚀性而广泛用于民用结构和基础设施工程中。在本文中分析了CFRP在基础设施和民用建筑中的应用。CFRP包裹的色谱柱通过将碳纤维增强聚合物封装来增强混凝土结构。该技术增强了负载能力,耐用性和对地震事件的抵抗力,为改造老化基础设施的成本有效解决方案并提高结构性绩效。地震性能和安全性能更好。与原始建筑材料相比,CFRP材料具有较高的固有频率,没有共鸣,并且由于加载频率和速度下的共振基本上没有快速断裂。它具有强大的美学欣赏可塑性。
CF 成本约占汽车高压存储系统总成本的 50% • 高压存储中基准 700+ ksi 商用纤维的价格范围为 26-30 美元/千克 CF • 为了满足 DOE 对车载氢气存储的目标,CF 成本需要降低至约 13-15 美元/千克 CF。CF 的成本包括前体纤维的成本和将前体转化为 CF 的成本 • 前体和转化过程都需要降低成本。• DOE 之前曾支持研发具有增强低成本、高强度 CF 和更低成本前体的潜力的新型先进转化工艺,但很少有研究专注于
Birla Carbon使用“摇篮来登机”生命周期评估(LCA)来量化产品碳足迹并确定改善组织整体碳足迹的机会。LCA评估从原料提取(摇篮)到最终产品(Carbon Black)的温室气体影响,准备离开工厂门。
融合沉积建模(FDM)3D打印被广泛用于生产具有功能目的的热塑性组件。然而,纯热塑性材料的固有机械局限性在某些应用中使用时需要增强其机械特性。解决这一挑战的一种策略涉及在热塑性矩阵中纳入加固材料,例如碳纤维(CF)。这种方法导致创建适合工程应用的碳纤维增强聚合物复合材料(CFRP)。在3D打印融合中使用CFRP的添加剂制造的好处,包括定制,成本效益,减少浪费,迅速的原型制作和加速生产,并具有明显的碳纤维强度。这项研究涵盖了不同材料组成的拉伸和压缩测试:可回收的聚乳酸(RPLA),PLA富含10 wt。%碳纤维,原始聚乙二醇乙二醇乙二醇(PETG)和PETG增强,并具有10 wt.%碳碳纤维。拉伸测试符合矩形形状标本的ASTM D3039标准,而ASTM D695标准则控制压缩测试程序。此外,还对不同材料的拉伸和抗压强度的主要3D打印构建方向参数的影响进行了调查。结果表明,RPLA在拉伸和压缩测试中均表现出优异的机械性能,而不论频率或外边构建方向如何。在拉伸强度分析的背景下,值得注意的是,RPLA表现出卓越的性能,超过了CFPLA的30%渗透方向,并且在外向方向上表现出显着的39.2%的优势。此外,与其PETG对应物相比,用碳纤维增强的PLA具有优越的拉伸性和压缩特性。CFPLA和CF-PETG之间的比较分析表明,CF-PLA表现出较高的拉伸强度,平板分别增加了26.6%和27.6%。在抗压强度分析的背景下,RPLA分别超过了CFPLA,PETG和CF-PETG,分别以23.7%%下度和67%的速度超过了CFPLA,PETG和CF-PETG。有趣的是,发现与纯PETG相比,掺入10 wt。%碳纤维会减少拉伸和压缩特性。
1 创新园区,阿卜杜勒阿齐兹国王科技城,利雅得 11442,沙特阿拉伯;saldosari@kacst.edu.sa 2 克兰菲尔德大学增强复合材料与结构中心,克兰菲尔德 MK43 0AL,英国 3 先进材料技术研究所,阿卜杜勒阿齐兹国王科技城,利雅得 11442,沙特阿拉伯;bmalotaibi@kacst.edu.sa(BMA);kalogab@kacst.gov.sa(KAA);dalshammari@kacst.edu.sa(DOA);thaar@kacst.edu.sa(THA);sdrees@kacst.edu.sa(SDA) 4 空间与地球科学研究所,阿卜杜勒阿齐兹国王科技城,利雅得 11442,沙特阿拉伯;alblehed@kacst.edu.sa(KSA); saldoihi@kacst.edu.sa (SAA) 5 未来经济技术学院,阿卜杜勒阿齐兹国王科技城,利雅得 11442,沙特阿拉伯;salsaleh@kacst.edu.sa * 通讯地址:bshammari@kacst.edu.sa;电话:+966-114813707
TCM 善于充分利用多年来在赛车开发中培养的减重设计和技术以及碳纤维增强塑料成型和加工技术。它极大地提高了汽车、摩托车、飞机、航空航天、无人机、铁路、工业设备、医疗设备和体育等各个行业中使用的各种零件和结构的性能。这归功于其在精密复杂零件和大型结构的设计、分析、试制和量产方面的专业知识。其产品在日本开发、设计和试制,并在其位于泰国的子公司 Carbon Magic Thailand 采用优化的流程和尖端设备进行量产。