1。摘要.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Bhavini Patel 是牛津大学化学专业硕士研究生最后一年的学生。她对功能化材料为可持续未来铺平道路的潜力非常感兴趣。Bhavini 专注于化学和环保意识的交汇,她很高兴能为绿色世界的旅程带来重大影响。
摘要:在发射环境中,卫星承受着严重的动态载荷。发射环境中的这些动态载荷可能导致有效载荷故障或任务失败。为了提高卫星的结构稳定性并使太空任务可靠地执行,必须有一个减少结构振动的加固结构。然而,对于有源小型SAR卫星,质量要求非常严格,这使得很难应用额外的结构来减振。因此,我们开发了一种碳纤维增强塑料(CFRP)基层压补片,以获得具有轻量化设计的减振结构,以提高S-STEP卫星的结构稳定性。为了验证基于CFRP的补片的减振性能,在试件级别进行了正弦和随机振动试验。最后,通过正弦和随机振动试验对带有所提出的基于CFRP的层压补片的S-STEP卫星的结构稳定性进行了实验验证。验证结果表明,基于CFRP的层压补片是一种有效的解决方案,可以有效降低振动响应,而无需对卫星结构设计进行重大更改。本研究开发的轻量化减振机制是保护振动敏感部件的最佳解决方案之一。
CMA:Toray Composite Materials,Inc。(美国)CFE:Toray Carbon Fibers Europe S.A.(法国)TAK:Toray Advanced Materade Korea Inc.(韩国)TACQ:TACQ:TAK COMPOSITES(QINGDAO)CO.,LTD。(中国)Zoltek:Zoltek Companies,Inc。(美国)CIT:复合材料(意大利)S.R.L.(意大利)三角洲:Delta Tech S.P.A.(意大利)TAC-G:Toray Advanced Composites Group EACC:欧元高级碳纤维复合材料GmbH(德国)TCM TCM:Toray Carbon Magic(日本)
用于太空有效载荷的微波专为各种微波频率而设计。它们还能够承受严苛的太空和发射环境。它们为航天器系统中的组件提供电气接口,确保高可靠性。该封装由许多载板组成,基板附着在其上。载板用作金属载体,以支撑蚀刻微波电路的氧化铝基板。基于 CFRP 的载板的自主开发可能取代标准的基于 Kovar 的载板,以将质量减少六倍并使其比现有拓扑更轻。然而,与 Kovar 材料相比,CFRP 的导电性明显较低。较低的导电性直接影响散热、电磁屏蔽、载流能力和表面处理工艺。为了克服这些问题并获得充分的优势,可以将先进的纳米填料碳纳米管 (CNT) 添加到聚合物中。使用 CNT 复合材料不仅可以减轻重量,还可以改善热参数和电参数。本文概述了增强 CFRP 的热性能和电性能的研究,并有助于设计微波封装组件。挑战在于确定合适的制造技术、工艺参数和 CNT 复合材料的特性。
摘要:本文介绍了一种在循环压缩载荷下获取碳纤维增强塑料 (CFRP) 平板冲击后损伤扩展的分析方法。基于引入的参考损伤模式 (RDM) 假设,给出了损伤增长寿命的解决方案。通过使用有限元分析 (FEA) 对裂纹驱动力与损伤大小的分析,可以确定获取损伤增长寿命的损伤临界大小。通过示例讨论和说明了损伤容限原理对包含冲击损伤的结构元件压缩-压缩循环载荷情况的适用性。使用引入的简化方法计算损伤增长寿命特征的结果表明,在复合材料结构中使用缓慢增长方法是可能的,但必须解决获得与所选裂纹驱动力测量有关的损伤增长率方程的精确参数的必要性。
摘要:本文提出了一种分析方法,用于获取碳纤维增强塑料 (CFRP) 平板在循环压缩载荷下的冲击后损伤扩展情况。基于引入的参考损伤模式 (RDM) 假设,给出了损伤增长寿命的解决方案。通过使用有限元分析 (FEA) 分析裂纹驱动力与损伤尺寸的关系,可以确定获得损伤增长寿命的临界损伤尺寸。通过示例讨论和说明了损伤容限原理对包含冲击损伤的结构元件压缩-压缩循环载荷情况的适用性。使用引入的简化方法计算损伤增长寿命特征的结果表明,在复合材料结构中使用缓慢增长方法是可能的,尽管必须解决获得与所选裂纹驱动力测量有关的损伤增长率方程的精确参数的必要性。
碳纤维(CF)增强聚合物复合材料已用于航空航天结构,因为与铝合金相比,它们具有低质量,高特异性,高特异性刚度和低生命周期维护。但是,由于其相对较低的导热率,原始的CF聚合物复合材料无法为某些应用(例如热交换系统和散热器)提供有效的热流。本文所描述的技术提供了新型的CF聚合物复合材料,通过掺入热解石墨板(PGS),具有很高的导热率。新型混合PGS/CF聚合物复合材料的热导率的测量比原始CF聚合物复合材料高约13至36倍,并且是铝合金6061的两倍。这种具有足够热导率的新材料适用于热交换系统的复合辐射器。
抽象更新呼吁在许多高性能应用中用碳纤维增强塑料(CFRP)更换常规材料,这是导致当前有关加工中最低量润滑(MQL)策略的研究浪潮。由于它们比常规材料具有竞争优势,聚合物基质复合材料(PMC)现在吸引了研究人员的关注,尤其是在加工领域。尽管大多数制造业都需要更少的加工,但精确加工(例如铣削和钻井)需要更多的研究输入。为此,本评论文章评估了纳米流体制备的各个方面及其在CFRP中的应用。分析了有关纳米流体的最新科学报告,侧重于属性,预先处理和应用(包括各自的方法),为在该领域的未来研究中为不断增长的数据库做出了贡献。本综述文章表明,切割温度和切割力仍然是表面固定的关键决定因素,而工具磨损构成了加工科学家希望通过使用适当的
具有高耐热、抗冲击和抗疲劳性能。通过快速成型工艺降低成本,从而提高部件制造效率。该材料适用于大规模生产具有高性能要求的航空航天结构部件。为了进一步支持该技术的引入,帝人创建了这种特定材料的材料卡,用于使用 Aniform ® 软件进行工艺模拟。这将有助于零件制造商和 OEM 优化热成型工艺,以便在短时间内以低成本获得此类材料的所有优势。帝人致力于成为一家支持未来社会的公司,利用其在开发和制造坚固而轻巧的高性能碳纤维产品方面的核心优势和能力,为减少飞机生命周期内的温室气体排放做出贡献。帝人作为飞机应用领域的领先解决方案提供商,将通过开发中下游产品线和相关应用(例如具有更高韧性和更高拉伸模量的经济高效的碳纤维以及包括热塑性预浸料在内的中间材料)来增强其下一代飞机市场。关于帝人集团 帝人集团 (TSE: 3401) 是一家技术驱动型全球集团,在环境价值、安全、保障和减灾以及人口变化和增强健康意识等领域提供先进的解决方案。帝人集团最初成立于 1918 年,是日本第一家人造丝制造商,现已发展成为一家独特的企业,涵盖三大核心业务领域:高性能材料,包括芳纶、碳纤维和复合材料,以及树脂和塑料加工、薄膜、聚酯纤维和产品加工;医疗保健,包括用于骨骼/关节、呼吸和心血管/代谢疾病、护理和症状前医疗保健的药品和家用医疗保健设备;以及 IT,包括用于医疗、企业和公共系统的 B2B 解决方案以及用于数字娱乐的套装软件和 B2C 在线服务。正如品牌宣言“人类化学,人类解决方案”所表达的那样,帝人集团坚定地致力于为利益相关者服务,旨在成为一家支持未来社会的公司。该集团由约 170 家公司组成,在全球 20 个国家/地区拥有约 20,000 名员工。截至 2022 年 3 月 31 日的财年,帝人集团的综合销售额为 9,261 亿日元(72 亿美元),总资产为 1,2,076 亿日元(94 亿美元)。新闻联系人帝人有限公司投资者和公共关系部 pr@teijin.co.jp