图 4 全头部 OPM 和混合 OPM/EEG 设计。(a – d)OPM 和混合 OPM/EEG 系统的误差指标与所考虑的头皮磁力仪数量的关系。两个系统的 r 95 的中值和最大值均与市售阵列(不同颜色)相对应的指标一起显示,这些指标是恒定的并且与 OPM 的数量无关。(e – g)仅 OPM(e)、混合 OPM/EEG(f)和完整 OPM ABC 160(g)阵列的等效不确定半径的空间分布,前两个阵列采用 100 个头皮磁力仪。(h – i)所有源的等效不确定半径的归一化直方图,采用线性(h)和半对数(i)尺度。(j)三个系统的 r 95 平均值与源深度的关系(每 5 毫米分箱一次)。 (k – l)最佳混合 OPM/EEG 阵列传感器位置(k)和布局(l)。EEG 电极和 OPM 分别用蓝点和红点表示
简介 磁传感器的发明已有 2000 多年的历史。市场对提高传感器性能、减小传感器尺寸、与电子系统集成以及降低价格等各种需求推动了磁传感器技术的发展。根据对磁场感应范围的需求,磁传感器大致可分为三类:低场(小于 1 微高斯)、中场(1 微高斯至 10 高斯)和高场感应(10 高斯以上)[1]。低场传感器主要用于医疗应用和军事监视,例如超导量子干涉装置 (SQUID)、搜索线圈和光纤磁力仪。中场传感器适用于检测地球磁场,例如磁通门和磁感应磁力仪。大多数用于高场感应的工业传感器使用永磁体(偏置)作为检测磁场的源。磁传感器在生物技术中有着重要的应用。典型应用之一是感测生理功能产生的磁场,例如神经信号和心脏信号。与植入电极以拾取活体组织中的电压信号相比,通过检测磁场来监测生理信号可以实现非侵入性,从而避免手术和医疗过程中出现的问题。
Supercam S100 无人机,飞行时间长达 1.5 小时,降落伞带有无人机着陆后自动解开绳索的系统;自动驾驶仪;导航灯;三轴磁力仪;数字遥测系统;自我诊断系统;惯性校正系统;通信丢失时自动返回系统;GPS/GLONASS 定位系统;带有卫星导航系统接收器的无线电调制解调器;25 公里数字视频发射器(内置于无人机);内置无人机航向摄像头,分辨率为 720х576
鉴于传感器数量和航天器总线内部的受限空间,狄奥尼号是这种尺寸的航天器中设计、建造和测试难度较大的航天器之一。它有五种科学仪器。其中四种仪器由戈达德内部研究与开发 (IRAD) 计划资助开发。它们包括经过飞行验证的双磁通门磁力仪、中性质谱仪 (NMS) 和双静电分析仪 (DESA),它们将直接测量电离层产生的地球电场的特定成分。狄奥尼号还包括一种称为航天器电位传感器 (SPS) 的技术演示仪器,它将进行测量,以帮助表征航天器的充电
项目详情:目前,全球范围内正在开发用于量子技术的原子平台,例如原子钟、量子重力仪和加速度计以及原子干涉仪。但测量通常非常耗时且成本高昂,而用于后处理时间序列的最先进的算法在数值上要求很高。尽管过去二十年一直专注于使用测量相位参数的量子干涉仪进行传感,但对于自然界基本理论中出现的大多数可观测量,例如磁场、凝聚态分数和化学势,尚不存在最佳估计理论。最近,安德斯教授的团队开发了全局量子测温法 [1],这是一种用于温度估计的尺度尊重框架,也是相位估计之外的估计理论的第一个原型。这种现代温度估计策略充分利用了估计参数的对称性,并采用了贝叶斯推理技术。真正的优势在于它可以指导如何在实验测量中选择控制参数,以便在有限的资源下最大限度地获得信息增益。正如 [2] 中利用伯明翰大学进行的钾 (K) 实验的一组预先存在的数据所证明的那样,可以使用全局量子测温框架先验地优化释放-重新捕获冷原子实验的等待时间。最近,安德斯教授及其同事使用诺丁汉大学的冷原子平台将这种新的全局估计技术扩展到完全不同的量——原子数的测量,发现与以前的传感技术相比,精度提高了五倍 [3]。本理论项目将建立使用磁力仪和陀螺仪同时估计磁场和惯性旋转的最佳策略。这些策略将用于减少正在进行的原子实验中准确估计参数所需的数据数量,因为获取大量数据集的成本可能高得令人望而却步。学生的目标之一是推广最近开发的用于估计位置同构参数的框架 [4]。目标是找出可适用于量子技术中除相位之外的任何相关参数的最佳量子估计策略的方程。这将涉及变分法、群对称性和信息几何等分析技术。后续目标是调整理论框架,使其适用于正在进行的原子磁力仪实验 [5]。这还将涉及使用预测的量子估计策略分析原型量子磁力仪产生的时间轨迹。目标是确定此类策略是否能够实际降低磁场和惯性参数估计的不确定性。预计将与目前正在开发量子磁力仪的实验团队合作。[1] J. Rubio、J. Anders、LA Correa,PRL 127,190402 (2021) [2] J. Glatthard 等人,PRX Quantum 3,040330 (2022) [3] 通过自适应对称信息贝叶斯策略将冷原子实验的精度提高五倍,M. Overton 等人,arXiv:2410.10615 (2024)。[4] J. Rubio,Phys. Rev. A 110,
KPLO 航天器将携带六个科学有效载荷,包括月球地形成像仪 (LUTI),用于绘制月球表面地图、寻找未来着陆点和确定月球表面的感兴趣位置;以及广角偏振相机 (PolCam),它将在三个光谱带对整个月球表面进行偏振成像测量。它将携带 KPLO 伽马射线光谱仪 (KGRS),用于绘制月球表面上和地下各种元素和辐射的分布图;KPLO 磁力仪 (KMAG),它将描述月球磁异常并研究月球地壳磁性的起源;以及抗干扰网络实验有效载荷 (DTN)。此外,KPLO 还将携带 NASA 有效载荷 Shadowcam,用于探索极地陨石坑中的永久阴影区域。
摘要 在 21 世纪,磁测量被广泛应用于许多不同的应用领域。在本文中,我们介绍了磁测量在军用飞机头盔提示系统 (HMCS) 中的实际应用。我们从研究问题和提出的解决方案(想法)开始。接下来,描述头盔系统运行的理论基础。在此,我们包括地球磁场的特性及其建模(WMM 2015、IGRF 12、EMM2017),以及在平面线圈、亥姆霍兹线圈和反亥姆霍兹线圈中产生的磁场分布理论。在后面的详细部分,我们描述了 HMCS 应用的计量方面以及测试中使用的不同磁力仪的特性,以及示例测试结果。最后,我们描述了正在进行的研究,而在总结中,我们介绍了在 HMCS 系统中航空电子实现磁现象的进一步研究可能性和潜在研究方向。
量子态的检测可能涉及该状态的破坏。量子物理定律是目前限制新一代光学原子钟稳定性的一个因素,这可能会重新定义秒,即时间的 SI 单位。解决其稳定性问题的一个潜在解决方案是使用量子纠缠。纠缠允许两个原子或离子表现出彼此相同的属性,而无需物理连接。这意味着可以观察其中一个原子或离子的状态,而不会破坏另一个原子或离子的状态。该项目将使用基于量子纠缠的技术来提高光学原子钟的短期稳定性,超越目前的限制。研究结果将提高基于可扩展纠缠的精密光谱学,并对加速度计、重力仪、陀螺仪和磁力仪等更广泛的量子传感器产生直接影响。
第一种定位技术基于一个或多个磁力计测量磁性物体的感应磁场。这些测量取决于物体的位置和磁特征,可以用从电磁理论中得出的模型来描述。对于这项技术,已经分析了两种应用。第一个应用是交通监控,它对强大的定位系统有很高的需求。通过在车道附近部署一个或多个磁力计,可以检测和分类车辆。这些系统可用于安全目的,例如检测高速公路上的逆行驾驶员,以及通过监测交通流量用于统计目的。第二个应用是室内定位,其中移动磁力仪测量室内环境中磁结构引起的静止磁场。在这项工作中,提出并评估了此类磁环境的模型。