图 1 Extra 300 ................................................................................................................................................43 图 2 后仪表板 ................................................................................................................................................43 图 3 Red Bull 飞机上使用的视频设备 ........................................................................................................44 图 4 GRT 发动机信息系统 .............................................................................................................................44 图 5 GRT EIS 传感器 .............................................................................................................................45 图 6 GRT 姿态、航向和参考系统 .............................................................................................................45 图 7 GRT 磁力计 .............................................................................................................................................46 图 8 GRT 电子飞行信息系统 .............................................................................................................................46 图 9 后处理器用户界面 .............................................................................................................................47 图 10 调用子 VI 的参考节点方法 .............................................................................................................48 图 11 数据查看器 .............................................................................................................................
“量子传感”描述了使用量子系统,量子特性或量子现象的使用来测量物理量。量子传感器的历史示例包括基于超导量子干扰设备和原子蒸气或原子钟的磁力计。最近,量子传感已成为量子科学和技术领域内的一个独特且快速增长的研究分支,其中最常见的平台是旋转量子,捕获的离子和弹药量。该领域有望在应用物理学和其他科学领域提供新的机会,尤其是在高灵敏度和精度方面。在这篇综述中,我们从感兴趣的实验者的角度对量子传感的基本原理,方法和概念进行了介绍。
摘要 本研究提出了一种利用无线传感器网络改善交通流量的智能交通管理系统。通过利用聚类算法,VANET 环境可用于所提出的系统。所提出的系统的组件包括传感器节点硬件、通过磁力计的车辆检测系统和用于节点间通信的 UDP 协议。路口控制代理接收有关车辆的信息,并利用其算法动态更改交通信号灯的定时。通过利用贪婪算法,可以通过连接多个交叉路口将系统扩展到更广泛的区域。 关键词 : 无线传感器、网络、交通路口、交通信号灯、智能交通管理。 _____________________________________________________________________________________
表 1:DA14585 IoT MSK 的源文件:概述 ...................................................................................... 14 表 2:DA14585 IoT MSK 专用的源文件 ...................................................................................... 15 表 3:DA14585 IoT MSK 配置的头文件 ...................................................................................... 15 表 4:配置参数 ............................................................................................................................. 16 表 5:DWSv2 特性 ...................................................................................................................... 31 表 6:功能报告结构 ...................................................................................................................... 32 表 7:多传感器报告 ...................................................................................................................... 33 表 8:传感器报告 ............................................................................................................................. 33 表 9:报告类型/报告 ID ................................................................................................................ 33 表 10:加速度计、陀螺仪和磁力计的报告结构 ............................................................................. 34 表 11:snsr_state 的位域结构 ........................................................................................... 34 表 12:环境传感器
“量子传感”描述了使用量子系统,量子特性或量子现象的使用来测量物理量。量子传感器的历史示例包括基于超导量子干扰装置和原子蒸气或原子钟的磁力计。最近,量子传感已成为量子科学和技术领域内的一个独特且快速增长的研究分支,其中最常见的平台是旋转量子矩,捕获的离子和通量量子。该领域将在应用物理和其他科学领域提供新的机会,尤其是在高灵敏度和精确度方面。本综述从感兴趣的实验者的角度介绍了量子传感的基本原理,方法和概念。
在广阔的kerr显微镜中,moke(磁光kerr效应)的磁化环的测量值是可以很容易地记录沿环路的相关域图像的优势。由于显微镜的物镜镜头暴露于磁场,但是,循环通常会因物镜中发生的偏振光的非线性法拉第旋转而严重扭曲,并叠加到moke信号中。在本文中引入了基于电动分析仪的实验方法,该方法允许补偿法拉第的贡献,从而导致纯Moke循环。配备了该技术的宽阔领域的Kerr显微镜与基于激光的摩克磁力计一样,但还可以构成域图像,从而为循环解释提供了基础。
可以使用微型和纳米机电系统(MEMS和NEMS)使用电子方法来驱动谐振器的机械模式。这些谐振器在检测质量[8],[9],力[10],[11],气体[12]和磁[13]方面表现出巨大的潜力。然而,所描述的机制具有几个相关的缺点,例如非线性输出,短路电势以及对高驱动电压的需求。基于调制的光学功率直接耦合到谐振器的光学驾驶已被提议作为解决上述问题的有效方法。使用光学驾驶和读数系统开发了许多机械谐振器。这些谐振器包括光力学磁力计[14],[15],光学加速度计[16]和位移传感器[17],[18]。
