三元稀土金属氟化物CsEuF 3 在环境条件下呈现理想的立方钙钛矿结构[ABX 3 ],B阳离子位点被稀土Eu离子占据,形成EuF 6 八面体。本研究通过对Eu-L 3 边的磁化率和同步加速器X射线吸收光谱(XAS)分析,证实在环境条件下Eu处于二价氧化态。温度依赖的磁化率数据显示,由于从Eu 2+态到Eu 3+态的部分跃迁,Eu的平均价态在20 K以下升高,从而形成平均价态为+2.23的混合价态。利用高压高能量分辨率荧光检测-XAS技术获得了CsEuF 3中Eu离子价态波动的直接证据,其中观察到价态从环境压力下的2.15 +连续变化到10.5 GPa下的2.5 +。这些发现表明,在类似的系统中,稀土金属有可能发现与价态不稳定性相关的有趣物理特性。
USASMDC 空间与导弹防御指挥技术中心感兴趣的主题标题:开发用于磁化率和热分析的多尺度电磁模型公告 ID:TCBAA001 SMDTC 办公室:SMDC-TCT-R SMDTC 能力:测试和评估、战略武器技术和高超音速失败关键词:HPM、建模、电磁描述:USASMDDC 高功率微波 (HPM) 团队对开发新型电磁 (EM) 模型感兴趣,以支持我们在宏观和微观尺度区域的 HPM 磁化率测试。它应该能够提供在尺度区域之间转换(例如从亚微米固态到电路级尺度特征的转换)中自我一致地促进的方法。它们应该有助于计算突发行为并有助于发现新的系统行为。模型应该能够计算系统、设备和连接尺度上的效应,并允许对动态热效应进行建模。建模工具应具备热堆叠、能量存储考虑和非平衡热力学等影响。代码应能够帮助设计用于模型验证的实验。
检测和认证材料中的纠缠和量子关联具有根本性和深远的意义,并且最近取得了重大进展。它既影响对量子多体现象基础科学的理解,也影响对适用于新技术的系统的识别。在量子信息理论的背景下,已经开发出适用于凝聚态物质的框架,将测量与纠缠和相干性联系起来。它们以纠缠见证和量子关联测量的形式出现。全面回顾了这些量的基础理论、它们与凝聚态实验技术的关系以及它们在真实材料中的应用。此外,还介绍了它们在协议等中的用途、见证和测量的相对优缺点,以及在关联电子、纠缠动力学和纠缠光谱探针等方面的未来前景。通过提供从基础到应用的易于理解和实用的处理,考虑到这项新兴研究的跨学科性质和正在进行的重大进展。特别强调了可通过集体测量获得的量,包括通过磁化率和光谱技术。这包括磁化率见证、单纠缠、并发和双纠缠、双点量子不和谐以及量子相干性测量(如量子 Fisher 信息)。
我们提出了非常规超导体SR 2 RUO 4中核磁共振NMR和旋转轨道效应的第一个原理研究。我们已经计算了均匀的磁化率,该磁化率与振幅中的实验非常吻合,但是,与较早的模型结果一样,我们发现计算出的硬轴是Z,与实验相反。我们还计算了所有原子的骑士移位和NMR弛豫率,并再次找到了整体良好的一致性,但是与实验相同特定特征(例如骑士移动各向异性)的重要偏差。我们的结果表明,在基于密度功能的计算中,SR 2 RUO 4中的相关性导致轨道效应低估。我们还认为,轨道极化在易感性中的相对贡献(10-15%)也是一个低估的“实验”值。我们讨论了O和Ru骑士在施加域的所有方向上跨过超导转变的令人困惑的不变性。我们表明,这一事实无法通过意外取消或旋转的散射来解释,因为它发生在某些元素超导体中。我们还指出,偶极子和轨道高铁对SR 2 RUO 4中的骑士移动的贡献很大,再加上轨道依赖性超导性的可能性,要求修改超电导状态中骑士骑士偏移的标准理论。
我的研究活动始于 1981 年,当时我完成了学士论文,在论文中我对音频和射频中的铁电材料进行了介电测量。由此自然而然地,我对凝聚态物质的介电响应产生了兴趣,更具体地说是对取向极化响应的研究,1985 年我的博士论文就是针对这一问题进行的答辩。传统上,介电响应是通过与指数响应函数相关的 Debye 模型来描述的。然而,在凝聚态物质中,很少找到符合此模型的介电响应,并且以经验方式在时间或频率域中提出了函数。在我的论文中,提出了理论模型,并计算了响应函数,该响应函数通常为非指数(威廉斯-瓦特)。该响应函数导致复杂的磁化率,类似于在凝聚态物质中经常获得的磁化率。这些模型将偶极子视为一个两级系统,它们与网络的相互作用(以谐波方法处理)赋予了它们动态行为。从这项工作中,我发表了四篇文章。完成博士论文后,我加入了当时物理系的其他成员,他们开始与萨拉戈萨大学有机化学系合作研究液晶,并一直持续到今天。这些年来,我们分享了国家项目(MEC、CICYT、MICINN ......)以及欧洲项目网络的协调研究项目。
摘要:我们在此报告了对酞菁氧钒 (VOPc) 的磁弛豫和量子相干性的研究,VOPc 是一种多功能且易于处理的潜在分子自旋量子比特。通过一种基于交流 (AC) 磁化率测定法、连续波 (CW) 和脉冲电子顺磁共振 (EPR) 光谱相结合的新兴多技术方法,研究了纯态 VOPc ( 1 ) 及其在同结构抗磁性宿主 TiOPc 中的晶体分散体,这些 VOPc 的化学计量比不同,即 VOPc:TiOPc 1:10 ( 2 ) 和 1:1000 ( 3 )。交流磁化率测量表明,在高达 20 K 的温度下,弛豫速率呈线性增加,这与直接机制的预期一致,但在施加的静态场值(高达约 5 T)的很宽范围内, 仍然很慢。对 3 进行的脉冲 EPR 光谱实验表明,在室温下仍具有量子相干性,T m 在 300 K 时约为 1 s,这是迄今为止分子电子自旋量子比特获得的最高值。在室温下,在这种核自旋活性环境( 1 H 和 14 N 核)中也观察到了 2 的拉比振荡,这表明这种分子半导体中量子相干性的突出稳定性,可用于自旋电子器件。
的生成,操纵和磁性域壁的传感是效率旋转器件设计的基石。半金属是为此目的而适合的,因为从自旋纹理处的自旋积累可以预期大型低场磁力信号。在一半金属中,la 1-x Sr x Mno 3(LSMO)锰矿被认为是其坚固的半金属基态的有前途的候选者,居里温度高于室温(t c = 360 K,x = 1/3)和化学稳定性。然而,由于各种磁磁性源的纠缠,即自旋积累,各向异性磁化率和巨大的磁化率,由于报道的值的差异很大,在报告的值中却差异很大,并且在报道的值中存在巨大差异。在这项工作中,在LSMO横形纳米线中测量了域壁磁磁性,其单域壁在整个路径上成核。磁阻的值超过10%,起源于由于传导电子对域壁的自旋纹理的误差效应而引起的自旋积累。从根本上讲,该结果表明了旋转纹理的非绝热过程的重要性,尽管与锰矿的局部t 2g电子相连。这些大的磁化值值足够高,足以编码和读取未来的氧化物自旋传感器中的磁位。
的生成,操纵和磁性域壁的传感是效率旋转器件设计的基石。半金属是为此目的而适合的,因为从自旋纹理处的自旋积累可以预期大型低场磁力信号。在一半金属中,la 1-x Sr x Mno 3(LSMO)锰矿被认为是其坚固的半金属基态的有前途的候选者,居里温度高于室温(t c = 360 K,x = 1/3)和化学稳定性。然而,由于各种磁磁性源的纠缠,即自旋积累,各向异性磁化率和巨大的磁化率,由于报道的值的差异很大,在报告的值中却差异很大,并且在报道的值中存在巨大差异。在这项工作中,在LSMO横形纳米线中测量了域壁磁磁性,其单域壁在整个路径上成核。磁阻的值超过10%,起源于由于传导电子对域壁的自旋纹理的误差效应而引起的自旋积累。从根本上讲,该结果表明了旋转纹理的非绝热过程的重要性,尽管与锰矿的局部t 2g电子相连。这些大的磁化值值足够高,足以编码和读取未来的氧化物自旋传感器中的磁位。
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
在涉及铁电氧化物的外延异质结构中,应变与电极化之间存在强耦合,机械和静电边界条件的组合为设计具有极大增强或全新功能的新型人工层状材料提供了巨大的机会。仅应变工程就可用于显著提高铁电体的转变温度,控制铁弹畴的类型和排列,甚至稳定名义上非铁电材料的铁电性。[1–3] 同时控制静电边界条件可以进一步创建具有多种形态、复杂有序、非平凡极性拓扑和增强磁化率的纳米级畴模式。[4–13]