xxviii. 光电子学 xxix. 量子物理与器件 xxx. 三维集成电路 xxxi. 集成电路与微电子系统中的 ESD 防护设计专题 xxxii. 半导体光电器件与物理 xxxiii. 材料分析 xxxiv. 自旋电子学器件与磁存储器 xxxv. 纳米线与无结晶体管 xxxvi. 对于以上未列出的其他课程,请与学院管理人员协商批准。
简介 磁阻效应最广为人知的是计算机硬盘的读取头或磁存储器 (MRAM) 应用,但它也非常适合用于传感器技术。它有着悠久的历史,各向异性磁阻 (AMR) 效应于 1857 年由开尔文勋爵首次发现。AMR 效应发生在铁磁材料中,例如结构为条带元素的镍铁层,其比阻抗随施加磁场的方向而变化。由于条带的特殊结构,电阻变化与施加的磁场在很宽的范围内成正比。这意味着通过巧妙设计传感器结构,可以非常高精度地检测非常小的磁场。
镍薄膜可用于从微电子到保护涂层 1 和催化等不同应用领域。2,3 Ni 是未来集成电路 (IC) 互连中铜的替代材料之一,因为 Ni 具有低电阻率和低电子平均自由程,当互连尺寸足够小时,它的电阻率会低于铜。4 例如,当线宽低于 10 纳米时,钴的电导率将超过铜,而镍具有相似的体电阻率,但电子平均自由程甚至低于钴。5 通过加热薄膜,可以将沉积在硅上的 Ni 薄膜转化为低电阻率接触材料 NiSi。全硅化物 Ni 栅极可用于互补金属氧化物半导体。6 由于其铁磁特性,镍对于磁存储器的发展至关重要。自旋转移力矩磁阻随机存取存储器 (STT-MRAM) 被认为是一种通用存储器,有朝一日可能会彻底改变整个微电子行业。7
已成功用于有效操控磁化,从而产生了最近的基于 STT 的商业化磁存储器解决方案。 [1] 自旋轨道扭矩 (SOT) 利用高自旋霍尔效应 (SHE) 材料中的平面电荷电流产生的平面外自旋电流,可以实现更节能的磁化操控,并且正在达到商业成熟度。 [2–4] 到目前为止,已经研究了各种高自旋轨道耦合 (SOC) 材料,包括重金属、拓扑绝缘体 (TI) [5–7] 以及最近的拓扑半金属 (TSM) [8–11],以最大化它们的自旋霍尔角 θ SH = | J s | / | J c |,这是它们将电荷电流密度 J c 转换为自旋电流密度 J s 的效率的量度。此外,已经研究了高 SHE 和 FM 材料层之间的界面工程,以最大化跨界面的自旋透明度 T int。 [12–19] 高效 SOT 自旋电子器件的关键挑战是最大化 SOT 效率,ξ= θ SH · T int。[20]
拓扑保护的磁性结构,如 skyrmion、半 skyrmion(meron)及其反粒子,构成磁序中的微小涡旋。它们是下一代存储设备中信息载体的有希望的候选者,因为它们可以利用电流诱导的自旋扭矩以极高的速度高效推进 [1, 2, 3, 4, 5, 6]。反铁磁体已被证明可以承载这些结构的版本,它们因其具有太赫兹动力学、无偏转运动和由于没有杂散场而改善的尺寸缩放的潜力而引起了广泛关注 [7, 8, 9, 10, 11, 12]。本文展示了拓扑自旋纹理、子和反子可以在室温下生成,并利用电脉冲在薄膜 CuMnAs 中可逆移动,CuMnAs 是一种半金属反铁磁体,是自旋电子应用的试验平台系统 [13, 14, 15, 16, 17, 18, 19]。反铁磁子子电生成和操控是充分发挥反铁磁薄膜作为高密度、高速磁存储器件有源元件的潜力的关键一步。
扭转二维范德华磁体可以形成和控制不同的自旋纹理,如 skyrmion 或磁畴。除了旋转角度之外,还可以通过增加形成扭转范德华异质结构的磁层数量来设计不同的自旋反转过程。在这里,A 型反铁磁体 CrSBr 的原始单层和双层被视为构建块。通过将这些单元旋转 90 度,可以制造对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运特性显示出磁滞的出现,这在很大程度上取决于施加磁场的大小和方向,不仅由扭转角度决定,还由形成堆栈的层数决定。这种高可调性允许在零场下切换易失性和非易失性磁存储器,并根据需要控制在负场或正场值下突然磁反转过程的出现。根据微磁模拟的支持,基于层中发生的不同自旋切换过程合理化了现象学。结果强调了扭转角和层数的组合是设计扭转磁体中自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理很有意义。
Skyrmion 从高能物理进入材料科学 1 ,在那里它们被引入来模拟原子核 2-4 。它们是拓扑保护磁存储器的潜在候选者 5-7 。 Skyrmion 的拓扑稳定性源于连续场在连续几何空间上映射的离散同伦类,例如,将三分量恒长自旋场映射到磁性薄膜的二维空间。它依赖于二维海森堡模型的平移(准确地说是共形)不变性。一旦这种不变性被晶格破坏,skyrmion 就会变得不稳定,不会坍缩 8 ,必须通过额外的相互作用来稳定,比如 Dzyaloshiskii-Moriya、磁各向异性、塞曼等。在典型的实验中,skyrmion 的大小由磁场控制。当尺寸低于一定值时,交换相互作用总是占上风,而 skyrmion 会坍缩 9。观察到的 skyrmion 纹理通常包含数千个自旋。即使是实验中最小的纳米级 skyrmion 也包含数百个自旋。此类 skyrmion 由 Lorentz 透射电子显微镜 10 成像,通常被视为经典物体。然而,随着 skyrmion 变得越来越小,人们必须预料到量子力学在某个时候会发挥作用。这项工作的动机是观察到 skyrmion 经典坍缩为晶格的一个点与量子力学相矛盾。它与不确定性原理相矛盾,就像电子坍缩到质子上一样。然而,当前的问题比氢原子的问题要困难得多。skyrmion 拥有的大量自旋自由度类似于多电子原子的问题,对于多电子原子,无法对其进行量子态的分析计算。过去,人们已经研究过 skyrmion 量子行为的某些方面。基于 Thiele 动力学与磁场中带电粒子运动的类比,人们研究了 skyrmion 在钉扎势中的量子运动 11 。人们通过从自旋场的拉格朗日量推导出 Bolgoliubov-de Gennes 哈密顿量,解决了手性磁体中的磁振子-skyrmion 散射 12 。通过开发