Skyrmion 从高能物理进入材料科学 1 ,在那里它们被引入来模拟原子核 2-4 。它们是拓扑保护磁存储器的潜在候选者 5-7 。 Skyrmion 的拓扑稳定性源于连续场在连续几何空间上映射的离散同伦类,例如,将三分量恒长自旋场映射到磁性薄膜的二维空间。它依赖于二维海森堡模型的平移(准确地说是共形)不变性。一旦这种不变性被晶格破坏,skyrmion 就会变得不稳定,不会坍缩 8 ,必须通过额外的相互作用来稳定,比如 Dzyaloshiskii-Moriya、磁各向异性、塞曼等。在典型的实验中,skyrmion 的大小由磁场控制。当尺寸低于一定值时,交换相互作用总是占上风,而 skyrmion 会坍缩 9。观察到的 skyrmion 纹理通常包含数千个自旋。即使是实验中最小的纳米级 skyrmion 也包含数百个自旋。此类 skyrmion 由 Lorentz 透射电子显微镜 10 成像,通常被视为经典物体。然而,随着 skyrmion 变得越来越小,人们必须预料到量子力学在某个时候会发挥作用。这项工作的动机是观察到 skyrmion 经典坍缩为晶格的一个点与量子力学相矛盾。它与不确定性原理相矛盾,就像电子坍缩到质子上一样。然而,当前的问题比氢原子的问题要困难得多。skyrmion 拥有的大量自旋自由度类似于多电子原子的问题,对于多电子原子,无法对其进行量子态的分析计算。过去,人们已经研究过 skyrmion 量子行为的某些方面。基于 Thiele 动力学与磁场中带电粒子运动的类比,人们研究了 skyrmion 在钉扎势中的量子运动 11 。人们通过从自旋场的拉格朗日量推导出 Bolgoliubov-de Gennes 哈密顿量,解决了手性磁体中的磁振子-skyrmion 散射 12 。通过开发
主要关键词