在这篇综述中,我们讨论了有关机器学习算法开发的最新结果,用于表征磁性的磁性磁纹理,这些磁性质地源自Dzyaloshinskii - Moriya - Moriya相互作用,该相互作用竞争了Heisenberg在Ferromagnets中的Heisenberg同型交换。我们表明,对于经典的自旋系统,有一系列的机器方法,可以根据几个磁化快照的基础,允许其准确的相位进行分类和定量描述。反过来,对量子天空的研究是一个较少探索的问题,因为对使用经典超级计算机进行此类波浪函数的模拟存在基本局限性。一个人需要找到模仿近期量子计算机上量子天空的方法。在这方面,我们讨论了基于从投影测量值获得的斑点数量有限的量子天空状态来估算经典对象的结构复杂性的实现。
由于石墨烯中的近似自旋谷对称性,在电荷中立时石墨烯中的元素的基态是特定的su(4)量子 - 量子 - 量子 - 尺寸 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子量。如果仅考虑库仑相互作用,则该铁磁铁可以提高自由度的自由度或等效到山谷伪旋转自由度。因此,选择的自由会受到明确打破SU(4)对称性的转基准能量尺度的限制,最简单的对称性是由zeeman效应给出的,该效应表达了磁场方向的旋转。此外,还可能由短距离相互作用或电子音波耦合引起谷对称性破坏术语。在这里,我们建立在相图上,该相图已由Kharitonov [Phys。修订版b 85,155439(2012)],以识别与这些类型的量子霍尔铁磁体兼容的不同天空。与铁磁体类似,电荷中立性的天空被中心的GR(2,4)Grassmannian描述,这使我们能够构造Skyrmion Spinors。然后,通过将其在变异方法中最小化的能量最小化,就其剩余的自由参数而言,这些不同的自由参数必须与距其中心较大距离的距离必须与屈光度的背景相兼容。我们表明,不同的天际象征类型在局部,sublattice分辨的,自旋磁化强度中具有明显的特征,在扫描键盘显微镜和光谱上原则上可以访问。
Skyrmion 是凝聚态中拓扑稳定的结构,具有粒子状特性。自 2009 年发现以来 [1],它们在自旋电子学领域引起了广泛关注,尤其在存储设备和逻辑运算中具有潜在应用价值。随着实验技术的进步,Skyrmion 的尺寸已经可以小到只有几个晶格常数。这引起了人们对从量子力学角度研究其特性的兴趣,进而促成了 Skyrmion 量子比特的提出 [2]。在反演对称磁体中,Skyrmion 表现出有趣的特性,可能适用于量子计算应用 [3]。在哈密顿层面,Skyrmion 可以被设计成与现有的超导量子比特(如 transmon 和 flux 量子比特)相似。受这些相似之处的启发,我们探索了当 Skyrmion 配置在所谓的 transmon 状态时可能意味着什么。超导 transmon 量子比特具有增强的抗噪性和可控性,彻底改变了量子计算领域。因此,很自然地,我们会问 Skyrmion 量子比特是否可以实现类似的改进,因为它们是完全不同的物理实体。我们研究了两种可能的 Skyrmion 量子比特类型:S ˆ z 量子比特和螺旋性量子比特,它们取决于底层材料的特性。我们讨论了量子 Skyrmions 的量化过程以及这两种量子比特类型如何从集体坐标量化中产生。这引出了我们最终用来描述材料和仪器参数方面不同量子比特配置的一般哈密顿量。我们从非谐性和耦合强度等常见度量的角度讨论这些配置,以展示未来 Skyrmion 量子比特的机遇和挑战。此外,与通常实现的动态门不同,我们探索了这些系统中几何和完整量子门的潜力。为了实现这样的门,必须将量子比特设计成三级系统(即 Λ 系统),而这在 Skyrmion 量子比特的背景下尚未被探索过。我们阐述了如何创建这样的系统,并模拟了单个量子比特门来确认结果。最后,我们阐述了如何使用这些方法实现通用门集,并讨论了当前为实现 Skyrmion 量子比特的可扩展量子平台所做的努力。
磁性 skyrmion 是具有类粒子特性的拓扑非平凡自旋配置。早期研究主要集中于拓扑电荷 Q = − 1 的特定类型的 skyrmion。然而,二维手性磁体的理论分析已经预测了 skyrmion 袋的存在——具有任意正或负拓扑电荷的孤子。虽然这种自旋结构是亚稳态,但最近的实验观察证实了孤立 skyrmion 袋在有限范围的施加磁场中的稳定性。这里利用 Lorentz 透射电子显微镜展示了 B20 型 FeGe 薄板中 skyrmion 袋的非凡稳定性。特别是,结果表明,嵌入 skyrmion 晶格中的 skyrmion 袋即使在零或反转的外部磁场中也能保持稳定。提供了一种用于成核此类嵌入式 skyrmion 袋的强大协议。结果与微磁模拟完全吻合,并建立了立方手性磁体薄板作为探索宽谱拓扑磁孤子的有力平台。
磁性纳米 - 凯林会产生量化的螺旋性激发,并且具有独特的螺旋度的纳米丝孔之间的量子隧道表明这些颗粒的量子性质。实验方法能够无损坏解决拓扑自旋纹理的量子方面,它们的局部动力学响应以及它们的功能现在有望实现量子操作的实用设备体系结构。具有在原子层进行测量,工程和控制物质的能力,纳米 - 千里是有机会将思想转化为固态技术的机会。概念验证设备将对螺旋性提供电气控制,为基于天空的量子计算机实现量子旋转状态的有希望的新途径。这种观点旨在讨论量子磁性和量子信息的新研究途径中的发展和挑战。
[5] R. Wiesendanger,自然评论材料2016,1,1。[6]B.Göbel,I。Mertig,O。A. Tretiakov,物理报告2021,895,1。[7] S. Li,X。Wang,T。Rasing,跨学科材料2023,2,260。[8] Y. Tokura,N。Kanazawa,化学评论2020,121,2857。[9] N. Nagaosa,Y。Tokura,自然纳米技术2013,8,899。[10] G. Kimbell,C。Kim,W。Wu,M。Cuoco,J。W。Robinson,通信材料2022,3,19。
报道了在多铁绝缘体 Cu 2 OSeO 3 中发现了一种新型长寿命亚稳态 skyrmion 相,并用 Lorentz 透射电子显微镜对低于平衡 skyrmion 口袋的磁场进行了可视化。此相可通过用近红外飞秒激光脉冲非绝热激发样品来获得,而任何传统的场冷却协议都无法达到,这被称为隐藏相。根据光创造过程的强烈波长依赖性以及通过自旋动力学模拟,磁弹效应被确定为最可能的光创造机制。该效应导致磁自由能景观的瞬态改变,将平衡 skyrmion 口袋延伸到更低的磁场。对光诱导相的演变进行了超过 15 分钟的监测,未发现任何衰减。由于这样的时间比激光脉冲在材料中引起的任何瞬态效应的持续时间长得多,因此可以假设新发现的 skyrmion 状态在实际应用中是稳定的,从而为在超快时间尺度上按需控制磁状态的新方法开辟了新天地,并大幅减少了与下一代自旋电子器件相关的散热。
探索磁性的机会,以及在2D限制中朝着旋转的应用。[7–9]在基于VDW外行系统的所有接口工程异质结构中,磁接近效应是操纵自旋的效果不可或缺的,[10-12]超导[13-15]和拓扑作用。[16–18]由于其非平凡拓扑结构,磁性天空已得到很好的研究,这导致了许多有趣的基本和动力学特性。[19-21]这些已报告主要是针对非中心单晶体的,[22-24]超薄外延系统,[25,26]和mag-Netic多层。[27–31]最近在与氧化层[32]或过渡金属二色氏元素[33]中连接的VDW铁磁体中观察到了Néel-type天空,并通过对滑敏相的控制,通过对滑敏相的控制进行调整。fur-hoverore,带有各种VDW磁铁,可以在其具有独特属性的新界面中创建Skrymions阶段。主持多个天际阶段的材料为该领域增添了丰富性,并具有额外的自由度设计
磁耦合材料的应用为磁性的探索以及二维极限下的自旋电子学应用提供了新的机遇。[7–9] 在所有基于范德华层状体系的界面工程异质结构中,磁邻近效应对于操控自旋电子学、[10–12] 超导[13–15] 和拓扑现象至关重要。[16–18] 磁性 skyrmion 因其非平凡拓扑结构而得到深入研究,这导致了许多有趣的基本和动力学特性。[19–21] 这些主要见于非中心对称单晶[22–24] 超薄外延系统[25,26] 和磁性多层膜。 [27–31] 最近,在与氧化层 [32] 或过渡金属二硫化物 [33] 界面的范德华铁磁体中观察到了 Néel 型 skyrmion,通过调整铁磁体厚度可以控制 skyrmion 相。此外,使用各种范德华磁体,可以在其新界面中创建具有独特性质的 skrymion 相。承载多个 skyrmion 相的材料增加了该领域的丰富性,并且在设计方面具有额外的自由度
其中,磁性 skyrmion 正被考虑用作信息载体,它是具有手性边界的纳米级自旋结构。[2] 自 2009 年首次在 MnSi 单晶中实验观察到 skyrmion 以来 [3],skyrmion 已在多种薄膜系统 [4–8] 以及其他单晶中被发现。[3,9–12] 在同一时期,随着石墨烯单层剥离的成功演示,二维层状材料家族引起了广泛关注。[13] 磁性范德华 (vdW) 晶体的加入为自旋电子学应用打开了大门。几种二维层状磁性材料块体晶体,包括 Cr 2 Ge 2 Te 6、[14] CrI 3、[15] 和 Fe 3 GeTe 2、[16],已被证明在厚度仅为一个或几个单层时就表现出磁性。前两种材料是绝缘的,而 Fe 3 GeTe 2(FGT)是金属的,因此提供了通过自旋流操纵自旋纹理的可能性。由于表现出强的垂直磁各向异性,并且可以通过改变其化学成分或离子门控来调整其居里温度(T c ),FGT 是一种非常适合自旋电子应用的材料。[16–19]