Loading...
机构名称:
¥ 1.0

手性是一种基本的不对称性质,用来描述可与其镜像区分开来的系统,它仍然是现代科学关注的焦点 1 – 4 ,手性材料有多种应用 5 – 8 。手性拓扑结构为新一代手性材料奠定了基础,其中手性扩展到纳米和微米尺度。在胆甾型液晶中观察到了非均匀手性态、螺旋、蓝色和扭曲晶界 (TGB) 相 9、10 。Skyrmion 是矢量序参数(如磁化强度或极化密度)的手性结构,由于其在信息技术中的潜在应用,在过去十年中在磁性材料中引起了相当大的关注 11 – 13。然而,这些材料的一个显着特征是特定的非手性对称性,这种对称性由胆甾体中的非镜像对称分子或磁性系统中的反对称自旋交换所具有,从而导致 Dzyaloshinskii-Moriya 自旋相互作用。最近,据报道,将承载 skyrmion 的磁体类型扩展到没有 Dzyaloshinskii-Moriya 自旋相互作用的系统14,15。然而,在这些系统中调整 skyrmion 手性的可能性仍是一个悬而未决的问题。虽然铁电材料中不存在预定义的手性对称性,但最近发现它们具有丰富的手性拓扑激发,包括布洛赫畴壁16-19,具有 skyrmion 结构的无芯涡旋20-22,单个 skyrmion 23,24,skyrmion 晶格 25 和 Hopfion 26。铁电体的一个显著特征是,当去极化电荷 ρ = ∇⋅ P 重排以降低它们的相互作用能时,由于限制和去极化效应的特定相互作用导致自发对称性破缺,从而出现手性,导致极化发生手性扭曲。重要的是,不同的手性(“左”态和“右”态)在能量上是简并的,因此可以互相切换。然而,执行这种手性切换是一项挑战,因为可以作为控制参数的基本场具有非手性性质。我们发现,由于去极化效应会导致大量拓扑激发,因此铁电纳米点可以提供丰富的相图,并且我们证明铁电纳米点包含极化 skyr-mions。特别是,我们设计了一个系统,其中可以通过施加电场来实现相反手性之间的受控切换。

铁电体中可控的 skyrmion 手性

铁电体中可控的 skyrmion 手性PDF文件第1页

铁电体中可控的 skyrmion 手性PDF文件第2页

铁电体中可控的 skyrmion 手性PDF文件第3页

铁电体中可控的 skyrmion 手性PDF文件第4页

铁电体中可控的 skyrmion 手性PDF文件第5页

相关文件推荐