高熵合金 (HEA) 具有几乎无限数量的可能成分,引起了材料科学的广泛关注。除了耐磨和耐腐蚀涂层之外,它们作为可调电催化剂的应用最近也成为关注的焦点。另一方面,HEA 表面的基本特性,如原子和电子结构、表面偏析和扩散以及 HEA 表面的吸附,却鲜有探索。研究的缺乏是由于单晶样品的可用性有限。在本研究中,报道了面心立方 (fcc) CoCrFeNi 薄膜在 MgO(100) 上的外延生长。通过 X 射线衍射 (XRD)、能量色散 X 射线光谱 (EDX) 和透射电子显微镜 (TEM) 对其表征表明,具有均匀且接近等摩尔元素组成的层沿 [100] 方向取向并与它们形成突变界面的基材对齐。采用 X 射线光电子能谱 (XPS)、低能电子衍射 (LEED) 和角分辨光电子能谱研究 CoCrFeNi(100) 的化学成分和原子及电子结构。结果表明,外延生长的 HEA 膜有可能填补样品间隙,从而可以对整个成分空间内明确定义的 HEA 表面的性质和过程进行基础研究。
摘要 利用反应脉冲直流磁控溅射技术进行了一项实验研究,探索了在 623 K (± 5K) 下沉积的半导体氧化钇薄膜的光谱和结构特性。根据 x 射线衍射和透射电子显微镜测量的结果,一氧化钇很可能在 β-Y 2 O 3 和 α-Y 2 O 3 之间的过渡区中形成,并伴有晶体 Y 2 O 3 。由于 4d 和 5s 轨道之间的能量分离低和/或相应轨道亚能级的自旋状态不同,一氧化物的稳定性在热力学意义上最有可能受晶体大小的自身限制。与金属氧化物立方结构相比,这种行为会导致晶体结构扭曲,并且还会影响纳米晶/非晶相的排列。此外,椭圆偏振光谱法表明半导体氧化钇的形成特征比结晶的 Y 2 O 3 更显著,且大多为非晶态。我们的目的是利用目前的研究结果,加深对不寻常价态 (2+) 钇的形成动力学/条件的理解。
摘要 本研究采用射频磁控溅射技术在SiO2/Si基底上沉积铝(Al)薄膜,以分析射频溅射功率对微结构表面形貌的影响。采用不同的溅射射频功率(100–400 W)来沉积Al薄膜。利用X射线衍射图(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和傅里叶变换红外(FTIR)光谱研究了沉积Al薄膜的特性。X射线衍射(XRD)结果表明,低溅射功率下沉积的薄膜具有非晶性质。随着溅射功率的增加,可以观察到结晶。AFM分析结果表明,300 W的射频功率是生长最光滑Al薄膜的最佳溅射功率。FTIR结果表明,不同的射频功率影响沉积薄膜的化学结构。 SEM结果表明,随着溅射功率的增加,基体表面形成了孤立的纹理。总之,射频功率对沉积薄膜的性质,特别是结晶和形状有显著的影响。
利用三维受限磁控溅射源 (L-3DMS) 在低于 100 C 的温度下成功沉积了超薄锡掺杂结晶氧化铟 (ITO) 薄膜 (≤ 50 nm)。在低处理温度下沉积的超薄 ITO 薄膜的电阻率和迁移率分别约为 ∼ 5 × 10 − 4 · cm 和 > 30 cm 2 /Vs (厚度为 30 nm)。据信,利用 L-3DMS 沉积的超薄 ITO 薄膜的高质量与 L-3DMS 的高密度等离子体和低放电电压改善了 ITO 薄膜的结晶度和氧空位有关,这使得能够在低处理温度下形成晶体结构。关键词:透明导电氧化物 (TCO)、3-D 受限磁控溅射、ITO 薄膜、高等离子体密度、晶体结构、低温。
空间应用中心 (ISRO) 从事微波集成电路制造,用于通信、遥感和导航有效载荷。SAC 开发了使用磁控溅射技术在氧化铝基板的两侧(顶部和底部)进行 Cr-Cu-Au(铬-铜-金)金属化的工艺。MIC 制造的基材是介电陶瓷,即氧化铝,将在其上进行金属化以进行 MIC 图案化。
沉积技术 基片厚度密度参考温度 (nm) (g/cm 3 ) (◦ C) 脉冲激光沉积 石英玻璃 120-140 4.88- 5.4 取决于房间 Kim 等人 [1] (PLD) 激光功率、O 2 分压、目标-基片距离 80mJ、10Pa、35mm 时为 4.88(低 VO ) 80mJ、5Pa、35mm 时为 5.39(高 VO ) 等离子增强原子 Si 和蓝宝石 37.8 5.154 80 Yang 等人 [2] 层沉积(PEALD) 2500 W 5.325 250 PEALD Si (100) 10 4.83 100 Li 等人[3] 100 W ≥ 5.5 ≥ 150 电子束蒸发 GaAs 和 Si 95.5 5.152 200-350 Passlack 等人 [4] 4.5-4.8 40 分子束外延 GaAs (001) 85.5 5.30 具有一定结晶性 420-450 Yu 等人 [5] (MBE) 射频磁控溅射 SiO 2 /Si 25 5.32 有 O 2 室溅射 Han 等人 [6] 4.84 无 O 2 (更快的蚀刻速率) 射频磁控溅射 Si 498.9 4.78 室 Liu 等人 [7]
本研究致力于脉冲直流反应磁控溅射氧氮化铪 (HfOxNy) 薄膜的技术和优化。采用田口正交表法优化 HfOxNy 薄膜的制备工艺,以获得具有最佳电气参数的材料。在优化过程中,通过对以氧氮化铪为栅极电介质的 MIS 结构的电气特性监测介电薄膜的参数。还检查了制备的 HfOxNy 层的热稳定性。结果显示,热处理后制备的薄膜的电气参数有所改善。即,我们观察到有益的平带电压 (Vfb) 值、CeV 特性的频率色散消失、有效电荷 (Qeffi/q) 降低以及所检查的 MIS 结构界面陷阱 (Dit) 密度降低。然而,与参考样品相比,介电常数值略低。证明了 HfO x N y 层在高达 800 °C 的温度下具有优异的稳定性。尽管观察到层体中结晶相的显著增加,但未发现电气性能或表面形貌的恶化。本研究的结果使所研究的采用脉冲直流反应磁控溅射制备的 HfO x N y 成为 MIS 结构和器件中栅极电介质的可能候选者。
8. Mazur, MM;Pianaro, SA;Portella, KF;Mengarda, P.;Bragança, MDOGP;Ribeiro Junior, S.;Santos de Melo, JS;Cerqueira, DP,使用脉冲直流磁控溅射在陶瓷电绝缘体上沉积并表征 AlN 薄膜。表面与涂层技术 2015,284,247-251。https://doi.org/10.1016/j.surfcoat.2015.06.082。
具有交错结构(例如蚀刻停止 (ES) 和背沟道蚀刻 (BCE) 结构)的铟镓锌氧化物 (IGZO) 薄膜晶体管 (TFT) 已被证明可用作平板显示器中的电路器件 [1,2]。然而,由于栅极和源/漏极 (S/D) 电极之间的重叠,这些交错结构器件不可避免地具有较大的寄生电容,从而导致 TFT 器件的工作速度较低。自对准 (SA) 共面结构是克服该寄生电容问题的一种有前途的解决方案 [3]。形成导电的 n + -IGZO 以获得有源 S/D 区和 S/D 电极之间的欧姆接触是 SA 共面器件的重要工艺。已经提出了许多用于该工艺的方法,并且制备的 IGZO 器件具有良好的性能。通常使用等离子体处理(Ar、H2 等)[4,5] 和深紫外(DUV)照射 [6] 。然而,这些解决方案需要一个额外的步骤,如图 1a 所示,这会导致额外的工艺成本。在 SiO2 栅极绝缘体(GI)过蚀刻期间形成 n + -IGZO 是一种简单的方法 [7,8]。然而,当 GI 蚀刻等离子体可以蚀刻 IGZO 薄膜时,这种方法并不适用。最近,已经证明通过简单地涂覆有机层间电介质(ILD)可以形成 n + -IGZO 区域,并且获得了 24 Ω·cm 的沟道宽度归一化 S/D 串联电阻(R SD W)[9]。本报告展示了在 ILD 沉积过程中形成 n + -IGZO 区域的可能性。基于这个想法,其他制造低 R SD W SA 共面 IGZO TFT 的新方法值得研究。在这项工作中,我们使用磁控溅射工艺沉积 SiO x ILD 并同时为 SA 共面 IGZO TFT 形成 n + -IGZO 区域。这样,ILD 沉积和 n + 形成可以合并为一个步骤,如图 1b 所示。制造的器件具有相当低的 R SD W 。降低 IGZO 薄膜的机制
使用不同靶到基片距离的化学计量氮化硅靶,通过射频磁控溅射在单面 P 型抛光掺硼硅晶片基片上沉积氮化硅薄膜。改变靶到基片的间距(非常规参数)以优化表面粗糙度和晶粒尺寸。这种优化提供了均匀、密集的氮化硅薄膜的正态分布,没有表面裂纹。采用原子力显微镜探索氮化硅薄膜的精确表面粗糙度参数。所有样品的表面粗糙度和晶粒分析都表现出直接关系,并与靶到基片的间距呈反比关系。通过以下参数分析了 Si3N4 的表面形貌:平均粗糙度、均方根粗糙度、最大峰谷高度、十点平均粗糙度、线的偏度和峰度。氮化硅薄膜的表面粗糙度在基于氮化硅波导的生物传感器制造中具有重要意义。 (2022 年 8 月 4 日收到;2023 年 4 月 3 日接受) 关键词:原子力显微镜、射频磁控溅射、氮化硅、靶材到基板间距、薄膜 1. 简介 氮化硅具有卓越的光学、化学和机械性能,是微电子学中用作电介质和钝化层 [1] 以及微机电系统 (MEMS) 中结构材料最广泛的材料 [2, 3]。氮化硅薄膜由于其在可见光和近红外 (NIR) 区域的高折射率和透明度,在光电子应用中也发挥着至关重要的作用 [4, 5]。氮化硅薄膜在光电子领域的主要应用是基于光波导的生物传感器作为平面光波导 [6-8]。平面光波导是一种三层结构,其中通常称为芯的高折射率薄膜夹在两个低折射率膜(称为下包层和上包层)之间。平面波导内部的光传播基于全内反射原理。据报道,光波导中芯体表面的粗糙度是造成波导边界处光传播损耗的原因 [10, 11]。这是由于界面处的反射和折射现象而不是全内反射造成的。芯体的粗糙表面可以将光散射到不同方向。芯体和包层之间的折射率差 ∆n 越大,光在芯体中的限制就越大。因此,由于氮化硅的折射率约为 2,而二氧化硅的折射率约为 1,因此二氧化硅/氮化硅/二氧化硅的特定结构是平面光波导的合适候选材料。46 作为上下包层,折射率差 ∆n ~ 0.5[9]。Si 3 N 4 薄膜通过低压化学气相沉积、热蒸发、等离子体增强化学气相沉积和磁控溅射系统制备[12-16]。然而,磁控溅射技术由于无毒气体、低温沉积、易于调节沉积速率和沉积系统简单而比 PECVD 技术具有相当大的优势[17]。薄膜的常规参数