5 住院外科医生,普通医学部 ESIC PGIMSR,班加罗尔。Arpithg01@gmail.com 摘要简介:糖尿病肾病 (DN) 是糖尿病的主要微血管并发症之一。,大约 40% 的 2 型糖尿病患者会患上这种疾病。血清 γ-谷氨酰转移酶 (GGT) 是一种细胞表面酶,常用作肝损伤的生物标志物。血清 γ-谷氨酰转移酶 (GGT) 与肾功能障碍之间的关系尚无定论。在本研究中,我们研究了血清 GGT 与确诊为 2 型糖尿病患者的糖尿病肾病 (DN) 之间的关系。方法:本研究共纳入 119 名门诊或住院糖尿病患者。分析了全血液检查。记录了每个参与者的 GGT、微量白蛋白尿、尿素、肌酐和肾脏大小。结论:在我们的研究中,GGT 升高与 2 型糖尿病患者的糖尿病肾病独立相关。血清 GGT 是糖尿病肾病风险的良好指标,可用作糖尿病肾病的预测指标。关键词:糖尿病肾病 (DN) · γ-谷氨酰转移酶 (GGT) · 2 型糖尿病 (T2DM),白蛋白*通信作者:电子邮件:avinashhr19@gmail.com 收到:2024 年 10 月 24 日接受:2024 年 10 月 29 日 DOI:https://doi.org/10.53555/AJBR.v27i3.3178 © 2024 作者。本文根据知识共享署名-非商业性使用 4.0 国际许可协议 (CC BY-NC 4.0) 发布,允许在任何媒体中进行非商业性的无限制使用、分发和复制,但必须提供以下声明。 “本文发表于《非洲生物医学研究杂志》” 简介:糖尿病 (DM) 是一种以微血管和大血管并发症为特征的全身性疾病,在世界范围内正成为日益严重的问题 [1]。糖尿病肾病 (DN) 是糖尿病的主要微血管并发症之一,大约 40% 的 2 型糖尿病患者会患上糖尿病肾病 [2]。糖尿病肾病与重大心血管风险和代谢紊乱一起,正在成为人类健康的一个严重问题 [1, 2,3]。几十年来,DN 导致的死亡率急剧上升
研究文章 分子对接和模拟研究预测乳酰辅酶 A 是 p300 定向乳酸化的底物 Rushikesh Patel 1、Ajay Kumar 1#、Kiran Bharat Lokhande 2#、KV Swamy 2,3、Jayanta K. Pal 1、Nilesh Kumar Sharma 1 * 1 癌症和转化研究实验室,Dr. DY Patil 生物技术与生物信息学研究所,Dr. DY Patil Vidyapeeth,浦那,马哈拉施特拉邦,印度,411033。 2 生物信息学实验室,Dr. DY Patil 生物技术与生物信息学研究所,Dr. DY Patil Vidyapeeth,浦那,马哈拉施特拉邦,印度,411033。 3 生物信息学研究组,麻省理工学院生物工程科学与研究学院,麻省理工学院-ADT 大学 Pun,马哈拉施特拉邦,印度,412201。# 贡献相同,并列第二作者 *通讯作者:Nilesh Kumar Sharma 博士 癌症和转化研究实验室教授 生物技术系 Dr. DY Patil 生物技术与生物信息学研究所,浦那 Dr. D. Y Patil Vidyapeeth 浦那,浦那,MH,411033 电子邮件:nilesh.sharma@dpu.edu.in 电话:+91-7219269540 ORCID ID:Nilesh Kumar Sharma 博士 https://orcid.org/0000-0002-8774-3020 致谢:作者感谢印度政府新德里 DST-SERB(SERB/LS-1028/2013)和印度浦那 Dr. DY Patil Vidyapeeth(DPU/05/01/2016)的资金支持。本稿件已在“bioRxiv”上作为预印本发布。利益冲突 作者声明他们没有利益冲突。 道德声明:本研究不涉及任何道德问题。
瞄准者:本指南主要是为临床医生提供的教育资源,以帮助他们提供优质的医疗服务,不应将其包括在内的所有适当的程序和测试,或不包括其他程序和测试,这些程序和测试可合理地指导获得相同的结果。遵守本指南并不一定能确保成功的医疗结果。在确定任何特定程序或测试的适当性时,临床医生应将其自己的专业判断应用于个别患者或标本所呈现的特定临床情况。临床医生被鼓励记录使用特定程序或测试的原因,无论它是否符合本指南。还建议临床医生注意通过该指南的日期,并考虑在该日期之后可用的其他医学和科学信息。©美国医学遗传学学院,2009年(部分通过MCHB/HRSA/HHS授予#U22MC03957)
ningthoujam babulu和n surbala devi摘要进行了锅实验,以检查单个超级磷酸盐(SSP),岩石磷酸盐(RP)和磷溶解细菌(PSB)对磷及其在酸土中摄取的磷的影响。与未经处理的控制相比,所有磷处理土壤的实例均表现出更高水平的可用磷及其在作物生长的不同阶段的吸收。与未经处理的对照进行比较,所有经过磷处理的土壤的可用P及其在作物生长的不同阶段的吸收明显更高。在用50%SSP + 50%RP + PSB处理的土壤中观察到可用的P明显更高。在50%SSP + 50%RP + PSB的帕迪中记录了相对较高的磷摄取,然后是25%SSP + 75%RP + PSB。在50:50与PSB结合使用SSP和RP的应用可维持恒定的磷池,以提供可用性和农艺有效性。psb提高了应用的SSP和RP的效率,从而增加了对农作物的磷的可用性,从而最终可以提高酸性土壤中稻田的产量。关键字:稻田,磷溶解细菌,单个超磷酸盐,岩石磷酸盐,营养吸收1。引言磷是植物生长所需的三种主要大量营养素之一,在各种代谢过程中起着至关重要的作用,包括能量转移,光合作用以及核酸和蛋白质的合成(Roch等,2019)[27]。土壤中的一般磷含量约为0.05%(按重量),只有0.1%的含量可用于植物摄取。磷在土壤中的可用性通常由于其强烈的固定和固定反应而受到限制,从而导致农作物的磷次磷摄取(Richardson等,2011)[26]。由于Al和Fe的固定,植物或Ca和Mg无法访问,或者Ca和Mg无法被植物吸收(Murphy and Sims,2012)[20]。为了减轻与磷缺乏症相关的挑战,农民通常采用磷肥料来增强养分利用率并促进植物生长。在这些肥料中,单个超级磷酸盐(SSP)和磷酸二硫酸盐(DAP)由于其释放速率变化和植物的可及性而被广泛使用(Azeem等,2018)[3]。他们为植物提供了容易获得的磷。以及与外部进口肥料相关的高成本,磷酸盐肥料的不加区分使用也有害。可以提及以下作用:过度的磷吸收导致磷毒性,从而提高植物组织中的磷浓度并破坏营养平衡;硼的毒性;铜吸收降低;铁在土壤中的固定;并防止根部吸收铁(Jupp等,2021和Renneson等,2016)
具有双自由基特征的多环芳杂环 (PAH) 的分子拓扑合成源于分子内偶联的突破。在此,我们报道了选择性 Mn(III)/Cu(II) 介导的 C − P 和 C − H 键断裂,以获得具有螺旋或平面几何形状和不同阳离子电荷的坚固的供体稠合磷鎓。前一种螺旋结构包含一个共同的磷酸[5]螺旋化受体和不同的芳胺供体,而后一种平面结构包含一个磷酸[6]螺旋化和相同的供体。这些前所未有的供体-受体 (D − A) 对表现出独特的拓扑依赖性光电特性。折叠螺旋自由基中心具有极端的电子缺陷状态和空间隔离,具有高度的双自由基特性 (y 0 = 0.989)。此外,巧妙的电荷转移 (CT) 和局部激发 (LE) 跃迁成分促进了不同溶剂中不同的杂化局部和电荷转移 (HLCT),赋予了 0.78 eV (~217 nm) 的最大发射带隙变化。阳离子发射也可以通过拓扑定制和极性依赖的 HLCT 从蓝色区域调整到近红外区域,这可以在兼容的手性薄荷醇基质中输出额外的圆偏振发光,同时提高量子效率并保留深红色辉光。值得一提的是,原子精确的 Mn(III) 卤化物已被史无前例地捕获并确定用于 C-P 键活化。
摘要:磷 (P) 是植物生长必需的常量营养素之一,是提高多种作物生产性能的必需资源,尤其是在风化程度较高的土壤中。然而,以肥料形式施用的大部分营养素在中期会变得“惰性”,无法被植物吸收。合理使用磷对环境可持续性和社会经济发展至关重要。因此,需要替代方法来管理这种营养素,而使用磷溶解微生物是一种优化作物利用磷的选择,可以探索土壤中可用程度较低的营养成分,并减少对磷肥的需求。本研究的目的是讨论磷的重要性以及微生物如何促进磷在农业中的可持续利用。在这篇综述研究中,我们介绍了几项关于微生物作为土壤磷动员剂的作用的研究。我们描述了养分对植物的重要性以及与其自然储备的不可持续开发和化学肥料的使用有关的主要问题。我们主要强调微生物如何构成释放养分惰性部分的基本资源,其中我们描述了几种溶解和矿化的机制。我们还讨论了接种磷溶解微生物给作物带来的好处以及将其用作生物接种剂的做法。使用微生物作为接种剂是可持续农业未来的可行资源,主要是因为它的应用可以显著减少磷的使用,从而减少磷及其储备的开发。此外,必须进行新的研究以开发新技术、勘探新的生物产品和改进管理实践,以提高农业中磷的利用效率。
因此,必须重点关注从牛粪等来源中回收磷,以防止自然资源枯竭。该项目旨在开发一种在同一反应器内同时回收磷酸钙 (CaP) 和甲烷 (CH 4 ) 的技术。回收的 CaP 可用作肥料,而 CH 4 可作为农场的能源。目标是设计一个可持续的系统,利用自然原理和牛粪中已经存在的微生物将牛粪中的资源重新用于农场(图 2)。
导电网络是锂离子电池电极中不可或缺的组件,它具有向活性材料提供电子的双重功能,而其孔隙率可确保锂离子电解质可访问性传递和释放液体,从而最终确定电池的电化学性能。在学术研究领域中,制造具有有效导电网络的电极的任务已成为艰巨的挑战,深刻影响了研究人员展示活性材料的内在电化学性能的能力。在针对电池电极的导电添加剂的各种景观中,研究人员在决定适当的添加剂和最佳电极准备方法时面临着无数的选择。本综述旨在提供基本的理解和实用指南,用于在各个长度尺度上设计具有有效导电网络的电池电极。这涉及从大量选项中精心选择的特定碳导电添加剂,以及探索将其有效整合到电极中的方法,所有这些都针对活性材料的独特特征和特定研究目标量身定制。
紫罗兰色磷(VP)因其独特的物理化学特性和光电应用中的潜力而引起了很多关注。尽管VP具有类似于其他2D半导体的范德华(VDW)结构,但在底物上直接合成VP仍然具有挑战性。此外,尚未证明由无转移VP akes组成的光电设备。在此,一种二辅助蒸气相传输技术旨在直接在SIO 2 /Si底物上生长均匀的单晶VP Akes。晶体VP平均的大小比以前的液体脱落样品大的数量级。用VP Akes制造的光电探测器显示出12.5 A W - 1的高响应性,响应/恢复时间为3.82/3.03 ms,暴露于532 nm光线后。此外,光电探测器显示出对高敏化光检测有益的小黑电流(<1 pa)。结果,探测率为1.38×10 13琼斯,与VDW P – N异质结探测器的检测率相当。结果揭示了VP在光电设备中的巨大潜力以及单晶半导体薄膜生长的CVT技术。
X1 包括与湿气或空气反应的无机化学品,这些化学品会与湿气剧烈反应,产生腐蚀性气体。 (例如四氯化钛、亚硫酰氯、氯化铝、三氯氧化磷、五氧化二磷、氯磺酸) X2 包括与湿气或空气反应的化学品,这些化学品会点燃或产生火焰或易燃气体。 (例如镁、钙、金属钠、连二亚硫酸钠、碳化钙、磷 (白色、黄色、红色、黑色)) X3 包括与湿气或空气反应的有机化学品,这些化学品会与空气或湿气剧烈反应,产生腐蚀性气体。 (例如乙酰氯、氯硅烷) X4 包括与湿气或空气反应的有机化学品,这些化学品会点燃或产生可在空气或水中自燃的气体。 (例如格氏试剂、甲基溴化镁、丁基锂、三乙基铝、湿润苦味酸 (三硝基苯酚)) X5 包括有机氧化化合物。 (即过氧化甲乙酮、过氧化苯甲酰、叔丁基过氧化氢)