神经营养因子,包括NGF,BDNF和神经胶质细胞系的神经营养因子(GDNF),通过激活诸如PI3K/AKT和MAPK/ERK PATH的细胞内信号传导级联,刺激神经元存活和轴突伸长。该信号传导促进了细胞骨架重排和生长锥的进步。再生轴突的再生对于恢复神经传导速度至关重要[6]。尽管周围神经具有内在的再生能力,但较大的神经间隙和未对准的纤维仍然是重大挑战。这需要辅助策略,例如神经移植,导管和生物材料来弥合缺陷并优化再生环境[7]。
视网膜神经节细胞(RGC)通常无法再生轴突,导致视神经损伤后视力丧失。许多研究表明,调节特定基因可以增强RGC的存活并促进视神经再生,从而通过单基因操作诱导体内长距离轴突再生仍然具有挑战性。然而,合并的多基因疗法已被证明有效地有效增强了轴突再生。目前,有关促进视神经再生的研究仍然很慢,大多数研究无法实现超出视神经的轴突生长或与大脑重新建立联系。未来的研究优先级包括指导轴突生长沿正确的途径,促进突触形成和髓鞘形成,并修改抑制性微环境。这些策略不仅对视神经再生至关重要,而且对于中枢神经系统修复中的更广泛应用至关重要。在这篇综述中,我们讨论了视神经再生的多因素治疗策略,从而提供了对神经再生研究的见解。
摘要外周神经损伤(PNI)代表了严重的临床和公共卫生问题,因为它的自发恢复较差,自发恢复不良。与自体移植相比,自体移植仍然是诊所中长距离周围神经缺陷的最佳实践,使用基于聚合物的生物降解神经引导导管(NGC)的使用一直在获得动量,替代了指导严重PNI的维修而无需进行次级手术和供体培训和供体的养蜂组织。然而,简单的空心圆柱管几乎不能超过再生效率的自体移植,尤其是在关键尺寸的PNI中。随着组织工程技术和材料科学的快速发展,在过去几十年中,已经出现了各种功能化的NGC来增强神经再生。从脚手架设计方面的方面,特别关注可生物降解的聚合物,本综述旨在通过解决生物材料选择,结构性设计和制造技术的繁重需求来总结NGC的最新进展,从而对生物兼容,范围造成的范围,机械效率和机械效率,工业效率,机械效率,工业效率,工业效率,工业效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,释放,效益,机械效率,机械效率,释放效率,工业效率,工业效率,既定效率NGC的神经再生潜力。此外,比较并讨论了几种市售的NGC及其调节途径和临床应用。最后,我们讨论了当前的挑战和未来的方向,试图为理想的NGC的未来设计提供灵感,这些设计可以完全治愈长距离外围神经缺陷。
细胞外囊泡(EV)被定义为已知的异质囊泡,可保守,源自内体或质膜,并由细胞释放[1,2]。由于原核生物和真核细胞中细胞间通信的重要性,它们在正常的生理和病理生理学中都起着积极作用,这导致了它们的进化[3]。evs成为有助于这种交流的结构[4]。今天,众所周知,电动汽车是由它们起源和携带细胞特征的细胞编码和释放的。EV首先被认为是1946年血浆中的procagulant血小板衍生的颗粒。后来,由于沃尔夫(Wolf)于1967年进行的研究,这些结构开始被称为血小板粉[5,6]。他认为这些结构仅带有在那几年提供凝血活性的细胞残基。然而,后来意识到它们的功能责任要比携带细胞碎屑更多。evs由脂质,核酸,蛋白质(例如跨膜和胞质蛋白)以及与脂质代谢有关的蛋白质组成。它们被定义为被细胞排泄到细胞外空间中的脂质结合的囊泡[7-12]。通常,根据释放机制和维度进行了简单的分类,但是该分类仍未完全阐明。在未来几年将进行的研究将允许更新此分类。通常,根据释放机制和大小进行了简单的分类。随着研究继续进行将在未来几年进行的研究将允许更新此分类。根据国际细胞外囊泡学会(ISEV)在2024年发表的细胞外囊泡研究的最小信息(MISEV2023)指南,如果根据大小,密度,密度,密度,分子组成等特性(例如大小,密度,密度,密度,密度,密度,密度,密度)[13],将继续仔细鼓励使用EVS子类型。
人类中枢神经系统 (CNS) 中的成熟神经元在受伤后无法再生。这是不同病因的共同点,包括多发性硬化症、脊髓损伤和缺血性中风。再生障碍会导致永久性功能障碍,严重影响患者的生活质量,给全世界带来沉重的社会经济负担。人们付出了巨大的努力来揭示导致这一现象的机制,现在我们知道强大的细胞内和细胞外屏障会阻止轴突修复。这些知识促成了许多临床试验,旨在通过不同的方法促进神经再生。在这里,我们总结了目前对人类中枢神经系统再生不良原因的理解。我们还回顾了迄今为止已转化为临床试验的治疗尝试的结果。
背景:治疗长距离外周神经损伤(PNI)仍然是一个重大的临床问题。基于石墨烯的支架具有细胞外基质(ECM)的特征,并且可以进行电信号,因此已研究用于修复PNI。结合电刺激(ES),应期望井的性能。我们旨在确定还原氧化石墨烯纤维(RGOF)与ES在体内对PNI修复的影响。方法:RGOF是通过一步限制的热液策略(DCH)制备的。表面特性,化学成分,样品的电气和机械性能。在体外和体内都系统地探索了RGOF的生物相容性。总共将54只Sprague-Dawley(SD)大鼠随机分为6个实验组:硅胶导管,S+ES,S+RGOFS填充管道(SGC),SGC+ES,神经自体移植物和SHAM组,用于10毫米Sciaticic缺陷。在每组SD大鼠手术后12周时在手术后再生坐骨神经的功能和组织学恢复。 结果:RGOF表现出具有出色的机械和电性能的对齐的微通道和纳米通道。 它们在体外和体内都是生物成绩。 鉴于神经系统和形态恢复,所有6组均表现出PNI修复结果。 SGC +ES组达到了与神经自体移植类相似的治疗作用(P> 0.05),其表现明显优于其他治疗组。 结论:RGOF具有良好的生物相容性与出色的电气和机械性能相结合。在每组SD大鼠手术后12周时在手术后再生坐骨神经的功能和组织学恢复。结果:RGOF表现出具有出色的机械和电性能的对齐的微通道和纳米通道。它们在体外和体内都是生物成绩。鉴于神经系统和形态恢复,所有6组均表现出PNI修复结果。SGC +ES组达到了与神经自体移植类相似的治疗作用(P> 0.05),其表现明显优于其他治疗组。结论:RGOF具有良好的生物相容性与出色的电气和机械性能相结合。免疫组织化学分析表明,在SGC+ES中,与轴突再生和血管生成相关的蛋白质的表达相对较高。与ES结合,RGOF在鼠急性伸长损伤模型中为10毫米神经间隙提供了上等运动神经恢复,表明其出色的修复能力。与自体神经移植相似的治疗作用使我们相信这种方法是治疗周围神经缺陷的一种有希望的方法,预计将来将指导临床实践。关键字:周围神经缺陷,坐骨神经损伤,功能恢复,组织工程,导电材料
摘要:在改善脊髓损伤 (SCI) 后患者的预期寿命和生活质量的缓慢道路上,康复仍存在争议。神经系统再生能力的潜在作用促使人们多次尝试刺激 SCI 以重新建立中断的感觉运动回路并了解其在康复过程中的潜力。现在有大量资源可用,从药理学到生物分子方法,从神经调节到基于使用各种神经接口、外骨骼和虚拟现实应用的感觉运动康复干预。整合现有资源似乎是一个有前途的研究领域,尤其是从改善短期到中期生活条件的角度来看。减少慢性神经性疼痛、重新控制某些生理活动和增强残留能力等目标往往比完全功能恢复更为紧迫。在这篇观点文章中,我们概述了通过广泛的损伤康复阶段治疗 SCI 的最新干预措施。这项研究的根本目的是引入一种基于脊髓神经可塑性的多模式方法,以促进脊髓损伤后的功能恢复并改善生活质量。尽管如此,当单独使用时,生物分子治疗方法已被证明效果不佳。