咳嗽是一种保护性反射,可防止吸入异物和咳出分泌物。72 气道受感觉神经元支配,其激活通过迷走神经传递到 73 脑干和更高级的中枢(图 1)。气道神经通过神经末梢上的受体(例如 TRPV1 和 TRPA1)感知刺激性、有害性或机械刺激 74。在健康或疾病状态下,75 这些受体的刺激可能会导致“咳嗽冲动”,同时喉咙发痒,导致咳嗽(9)。ATP 门控 P2X3 离子通道等受体也可以激活 77 气道神经;ATP 可能因细胞损伤、炎症和感染而释放。咳嗽 78 外周神经末梢的激活最终会进入复杂的中枢神经系统 (CNS) 网络 79,调节咳嗽反应。中枢神经系统内有重要的抑制外周兴奋性输入的中心。迷走神经支配的其他解剖区域,如耳朵(阿诺德反射)和食道,也可能导致咳嗽敏感性。
糖尿病患者需要格外小心和关注双脚。糖尿病会损害双脚的神经末梢和血管,导致双脚受伤时难以察觉,从而导致摔倒。糖尿病还会干扰身体抵抗感染的能力。如果脚部轻微受伤,可能会发展成溃疡或发展成严重感染。
当手臂或腿部的一部分被手术切除(肢体截肢)时,肢体末端的神经会被切断。这通常会导致两种类型的持续性肢体疼痛:残肢疼痛通常由形成疼痛性良性肿瘤的神经末梢引起,或肢体被切除部分产生的幻肢痛。这些疼痛很难通过标准止痛方法治疗,有时即使接受治疗也不会消失。有针对性的肌肉神经再支配包括重新布置被切断的神经,将它们连接到附近肌肉中的其他神经(神经再支配)。该手术的目的是控制肢体截肢后的疼痛。
神经肽 Y (NPY) 是一种由 36 个氨基酸组成的肽,由中枢和周围神经系统在长时间交感神经激活后释放,在许多生理功能中发挥着重要作用。它是心脏中最丰富的神经肽,7 存在于供应血管、心肌细胞和心内膜的神经元中。8 NPY 与去甲肾上腺素一起由心脏交感神经末梢释放,并作为辅助递质和心脏功能的局部调节剂,充当强效血管收缩剂,同时还降低副交感神经驱动 9 并增加肌细胞钙负荷,1 0 因此它可能在 HF 的病理生理学中很重要。神经肽 Y 的半衰期比去甲肾上腺素长,并增强其血管收缩作用。功能性 NPY 是在前体 NPY 裂解后产生的,而前体 NPY 又被酶二肽基肽酶-4 进一步截断。它的作用是通过 G 蛋白受体 Y 1 R-Y6R 介导的。它被认为与动脉粥样硬化的发病机制有关,11 维持
突触体传统上是从啮齿动物或死后人类脑组织中富集的,但啮齿动物模型缺乏人类特有的突触特征,而死后组织中突触体的功能受到死后间隔的限制,并且通常仅显示疾病终点。此外,由于道德问题和可用性问题,只有少数研究针对人类样本。然而,神经类器官 (NO) 已成为分离完整和活的人类神经末梢以研究人类特有的突触传递方面的可能新来源。此外,突触体的富集通常使用密度梯度离心进行,这需要大量的起始材料。在本研究中,我们开发了一种应用差速离心方案从人类 NO 中富集突触结构的方法。然后,我们使用基于质谱的定量蛋白质组学来记录突触和生长锥特异性蛋白的富集,并在 KCl 刺激下进行定量磷酸化蛋白质组学来证明衍生突触结构的活力和生理功能。
Bylvay (odevixibat) 是一种回肠胆汁酸转运蛋白抑制剂,用于治疗患有进行性家族性肝内胆汁淤积症 (PFIC) 的 3 个月或以上患者的瘙痒症。Bylvay 还用于治疗患有 Alagille 综合征 (ALGS) 的 12 个月及以上患者的瘙痒症。PFIC 是一组常染色体隐性遗传的异质性肝病,其特征是胆汁淤积症早期发作(通常在婴儿期),伴有瘙痒和吸收不良,病情迅速发展并最终导致肝功能衰竭。瘙痒是胆汁淤积症中最明显和最难以忍受的症状。有人提出,瘙痒是由于血清胆汁酸增加而刺激无髓鞘表皮下游离神经末梢引起的。ALGS 是一种罕见的遗传性疾病,由参与子宫内胚胎发育的 JAG1 或 Notch2 基因突变引起。在 ALGS 患者中,多个器官系统可能受到突变的影响。在肝脏中,突变导致胆管异常狭窄、变形和数量减少,导致胆汁酸积聚、胆汁淤积,并最终导致进行性肝病。ALGS 患者所经历的胆汁淤积性瘙痒是所有慢性肝病中最严重的,大多数受影响的儿童在三岁时就会出现这种瘙痒。与 PFIC 或 Alagille 综合征相关的瘙痒的常规治疗包括尿糖胆酸 (UCDA)、抗组胺药(例如苯海拉明)、胆汁酸螯合剂(例如考来烯胺)、利福平、纳曲酮和舍曲林。使用限制:Bylvay 可能对具有特定 ABCB11 变体的 PFIC 2 型患者亚组无效,导致胆汁盐输出泵蛋白 (BSEP- 3) 无功能或完全缺失。
简介 1912 年,人们偶然发现了苯巴比妥的抗惊厥特性,这为现代癫痫药物治疗奠定了基础。随后的 70 年里,苯妥英、乙琥胺、卡马西平、丙戊酸钠和一系列苯二氮卓类药物相继问世。这些药物被统称为“公认的”抗癫痫药物 (AED)。20 世纪 80 年代和 90 年代,癫痫药物的协同开发已导致(迄今为止)16 种新药物被批准作为难控成人和/或儿童癫痫的辅助治疗,其中一些药物可作为新诊断患者的单一疗法。这些药物被统称为“现代”AED。在这一前所未有的药物开发时期,我们对抗癫痫药物如何在细胞水平上发挥作用的理解也取得了长足的进步。抗癫痫药物既不能预防也不能治疗,仅用于控制症状(即抑制癫痫发作)。反复发作的癫痫是神经系统间歇性和过度兴奋的表现,虽然目前市场上销售的抗癫痫药物的药理学细节仍未完全阐明,但这些药物基本上可以纠正神经元兴奋和抑制之间的平衡。人们认识到三种主要机制:调节电压门控离子通道;增强γ-氨基丁酸 (GABA) 介导的抑制性神经传递;减弱谷氨酸介导的兴奋性神经传递。表 1 重点介绍了目前可用的抗癫痫药物的主要药理学靶点,并在下文进一步讨论。当前抗癫痫药物靶点电压门控钠通道电压门控钠通道负责神经细胞膜的去极化和动作电位在神经元细胞表面的传导。它们在整个神经元膜、树突、胞体、轴突和神经末梢上表达。在产生动作电位的轴突起始段 (AIS) 中表达密度最高。钠通道属于电压门控通道超家族,由多个蛋白质亚基组成,在膜上形成离子选择性孔。天然钠通道由单个 α 亚基蛋白组成,该蛋白包含成孔区和电压传感器,与一个或多个辅助 β 亚基蛋白相关,这些辅助 β 亚基蛋白可以改变 α 亚基的功能,但对基本通道活动并非必不可少。哺乳动物脑中表达四种主要的钠通道 α 亚基基因,分别表示为 SCN1A、SCN2A、SCN3A 和 SCN8A,它们分别编码通道 Na v 1.1、Na v 1.2、Na v 1.3 和 Na v 1.6。这些通道在神经系统中的表达存在差异。Na v 1。3 的表达主要局限于发育早期阶段,而 Na v 1.1 是抑制性中间神经元的主要钠通道,Na v 1.2 和 Na v 1.6 在主要兴奋性神经元的 AIS 中表达。Na v 1.2 似乎