推断机器学习(ML)的重要性导致了大量不同的建议,尤其是在深度学习中。试图降低卷积神经网络的复杂性,我们提出了一个伏特拉过滤器启发的网络体系结构。此体系结构以延迟的数据输入样本之间的相互作用形式引起了受控的非线性。我们提出了一个级联的Volterra滤波实现,以大大减少执行与调用神经网络相同的分类任务所需的参数数量。我们证明了该伏特拉神经网络(VNN)的有效的并行实现,同时保持了相对简单且可能更易于处理的结构。此外,我们还展示了该网络对非线性融合RGB(空间)信息和视频序列的光流(时间)信息的相当复杂的适应,以进行动作识别。在UCF-101和HMDB-51数据集上评估了所提出的方法,以进行动作识别,并显示出优于最先进的CNN方法的状态。我们论文的代码库可在GitHub(https://github.com/sid- roheda/volterra-neural-networks)上找到。关键字:Volterra滤波器,活动识别,激活免费学习
容错量子计算机有望通过加快计算速度或提高模型可扩展性来大幅提高机器学习水平。然而,在短期内,量子机器学习的好处并不那么明显。理解量子模型(尤其是量子神经网络)的可表达性和可训练性需要进一步研究。在这项工作中,我们使用信息几何工具来定义量子和经典模型的可表达性概念。有效维度取决于 Fisher 信息,用于证明新的泛化界限并建立可表达性的稳健度量。我们表明,量子神经网络能够实现比同类经典神经网络更好的有效维度。为了评估量子模型的可训练性,我们将 Fisher 信息谱与贫瘠高原(梯度消失问题)联系起来。重要的是,某些量子神经网络可以表现出对这种现象的适应性,并且由于其有利的优化景观(由更均匀分布的 Fisher 信息谱捕获)而比经典模型训练得更快。我们的工作首次证明,精心设计的量子神经网络通过更高的有效维度和更快的训练能力比经典神经网络具有优势,我们在真实的量子硬件上对此进行了验证。
并非所有神经网络架构都是一样的,有些架构在某些任务上的表现比其他架构好得多。但是,与神经网络架构相比,权重参数有多重要?在这项工作中,我们想知道,在没有学习任何权重参数的情况下,神经网络架构本身能在多大程度上为给定任务编码解决方案。我们提出了一种搜索方法,用于搜索无需任何明确权重训练就能执行任务的神经网络架构。为了评估这些网络,我们用从均匀随机分布中采样的单个共享权重参数填充连接,并测量预期性能。我们证明,我们的方法可以找到无需权重训练就能执行多项强化学习任务的最小神经网络架构。在监督学习领域,我们发现使用随机权重在 MNIST 上实现远高于偶然准确率的网络架构。本文的交互式版本位于 https://weightagnostic.github.io/
摘要 — 随着机器学习在工业和科学领域得到更广泛和高度成功的应用,对可解释人工智能的需求日益增长。因此,可解释性和解释方法正受到越来越多的关注,以便更好地理解非线性机器学习(特别是深度神经网络)的解决问题的能力和策略。在这项工作中,我们的目标是 (1) 及时概述这一活跃的新兴领域,重点关注“事后”解释,并解释其理论基础;(2) 使用大量模拟从理论和比较评估的角度对可解释性算法进行测试;(3) 概述最佳实践方面,即如何最好地将解释方法纳入机器学习的标准使用中;(4) 在具有代表性的应用场景中展示可解释人工智能的成功使用。最后,我们讨论了这一令人兴奋的机器学习基础领域面临的挑战和未来可能的方向。
声音分类在当今世界的各个领域都有其用途。在本文中,我们将借助机器生成的声音数据来介绍声音分类技术,以检测故障机器。重点是确定音频分类方法的相关性,以通过声音检测有故障的电动机;在嘈杂和无噪声的情况下;因此,可以减少工厂和行业的人类检查要求。降低降噪在提高检测准确性方面起着重要的作用,一些研究人员通过为基准测试其模型而添加噪声来模拟数据。因此,降噪广泛用于音频分类任务。在各种可用方法中,我们实施了一种自动编码器来降低噪声。我们使用卷积神经网络对嘈杂和DeNo的数据进行了分类任务。使用自动编码器将分类的分类准确性与嘈杂的数据进行了比较。进行分类,我们使用了频谱图,MEL频率CEPSTRAL CO-EFIFIED(MFCC)和MEL光谱图图像。这些过程产生了令人鼓舞的结果,从而通过声音区分了故障的电动机。
英国加拿大的杰弗里·欣顿(Geoffrey Hinton),被称为“ AI的教父”,美国物理学家约翰·霍普菲尔德(John Hopfield)获得了“发现和发明的奖项,这些奖项可以通过人工神经网络为机器学习,”诺贝尔陪审团说。