Loading...
机构名称:
¥ 2.0

容错量子计算机有望通过加快计算速度或提高模型可扩展性来大幅提高机器学习水平。然而,在短期内,量子机器学习的好处并不那么明显。理解量子模型(尤其是量子神经网络)的可表达性和可训练性需要进一步研究。在这项工作中,我们使用信息几何工具来定义量子和经典模型的可表达性概念。有效维度取决于 Fisher 信息,用于证明新的泛化界限并建立可表达性的稳健度量。我们表明,量子神经网络能够实现比同类经典神经网络更好的有效维度。为了评估量子模型的可训练性,我们将 Fisher 信息谱与贫瘠高原(梯度消失问题)联系起来。重要的是,某些量子神经网络可以表现出对这种现象的适应性,并且由于其有利的优化景观(由更均匀分布的 Fisher 信息谱捕获)而比经典模型训练得更快。我们的工作首次证明,精心设计的量子神经网络通过更高的有效维度和更快的训练能力比经典神经网络具有优势,我们在真实的量子硬件上对此进行了验证。

量子神经网络的力量

量子神经网络的力量PDF文件第1页

量子神经网络的力量PDF文件第2页

量子神经网络的力量PDF文件第3页

量子神经网络的力量PDF文件第4页

量子神经网络的力量PDF文件第5页