物理信息神经网络 (PINN) 已成为解决科学计算问题的强大工具,从偏微分方程的求解到数据同化任务。使用 PINN 的优势之一是利用依赖于 CPU 和协处理器(如加速器)组合使用的机器学习计算框架来实现最大性能。这项工作使用量子处理单元 (QPU) 协处理器研究 PINN 的设计、实现和性能。我们设计了一个简单的量子 PINN,使用连续变量 (CV) 量子计算框架来解决一维泊松问题。我们讨论了不同的优化器、PINN 残差公式和量子神经网络深度对量子 PINN 精度的影响。我们表明,在量子 PINN 的情况下,优化器对训练景观的探索不如经典 PINN 有效,而基本随机梯度下降 (SGD) 优化器的表现优于自适应和高阶优化器。最后,我们重点介绍了量子和经典 PINN 在方法和算法上的差异,并概述了量子 PINN 开发的未来研究挑战。
主要关键词