摘要 - 递增能力分析(ICA)和不同的电压分析(DVA)通常需要电池降解监控的恒定当前条件,这限制了它们在现实情况下的适用性。本文提出了一种统一的方法,可以在一般充电当前概况下启用基于ICA/DVA的降解监测,这在文献中尚未解决。首先,提出了一种新颖的虚拟增量能力(IC)和不同电压(DV)的概念。第二,两个相关的卷积神经网络(CNN),称为U-NET和CONC-NET,是为了构建虚拟IC/DV曲线的构建,并估算了跨任何状态(SOC)范围内的一般充电概况的健康状况(SOH),以满足某些约束。最后,提出了两个称为移动U-NET和移动网络的CNN,分别替换了U-NET和Conv-NET以进行车载实现。它们会大大减少计算和内存需求,同时在虚拟IC/DV曲线构建和SOH估计中保留性能。在具有各种快速充电协议和SOC范围的电池模块的广泛实验数据集上进行了测试,拟议的U-NET和移动U-NET构造精确的虚拟IC/DV曲线可以提取有价值的降级功能。建议的Conv-NET和移动网络提供的模块级SOH估计值,根平方误差(RMSE)小于0.5%。关键字 - 增量容量分析;差分伏分析;非恒定电流充电;快速充电;卷积神经网络;健康状况估计
神经网络是大脑功能的基础,使人们能够感知,认知和学习。神经元与突触之间的复杂相互作用使大脑可以有效地处理大量信息。神经科学的进步继续揭示这些网络的复杂性,为大脑功能,疾病机制和潜在的治疗干预提供了新的见解。随着研究的进展,我们对神经网络的理解不仅会增强医学科学,而且会影响人工智能和脑机界面的发展,为开创性的创新铺平了道路。
摘要。存在许多具有对称性的系统的示例,并且可以通过具有对称性的控件进行监视。由于沿进化保留了对称性,因此不可能完全可控,并且必须将可控性视为具有相同对称性的状态的内部。我们证明,具有对称性的通用系统在这个意义上是可以控制的。该结果具有多种应用,例如:(i)当粒子之间相互作用的内核扮演均值场控制的作用时,粒子系统的一般可控性; (ii)在具有边界的歧管上对向量场的家庭的一般可控性; (iii)具有“通用”自发型层的神经网络体系结构的通用介绍 - 在最近的神经网络体系结构中,例如在变形金刚体系结构中的一种无处不在的层。我们开发的工具可以帮助解决模棱两可系统控制的其他各种问题。
2从稀疏的深神经网络到稀疏基质分解22 2.1神经网络简介。。。。。。。。。。。。。。。。。。。。。。。22 2.1.1神经网络的定义。。。。。。。。。。。。。。。。。。。。。。22 2.1.2神经网络的培训问题。。。。。。。。。。。。。。。。。。24 2.2稀疏神经网络的简介。。。。。。。。。。。。。。。。。。。25 2.2.1稀疏神经网络:定义和培训问题。。。。。。25 2.2.2稀疏深神经网络培训的实用方法。。。。。。。。29 2.2.3关于稀疏深神经网络的理论。。。。。。。。。。。。。34 2.3稀疏基质分解及其与稀疏深神经网络的关系。35 2.3.1问题制定和与稀疏深神经网络的第一个关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 2.3.2稀疏基质分解的算法以及稀疏DNNS训练中与修剪/再培训方法的关系。。。。。。。。。。。36 2.3.3稀疏基质分解的其他应用。。。。。。。。。。。38 2.3.4稀疏基质分解的相关作品。。。。。。。。。。。。。40 2.4固定支持矩阵分解。。。。。。。。。。。。。。。。。。。。。。。44 2.4.1问题公式。。。。。。。。。。。。。。。。。。。。。。。。。。。44 2.4.2固定支持基质分解的动机。。。45 2.4.3固定支持矩阵分解的众所周知的实例。。。。。47 2.5论文的前景。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49
我们报告了能够对齐多个核苷酸序列的卷积变压器神经网络。神经网络基于图像分割中常用的U-NET,我们采用了该神经网络将其用于将未对准序列转换为对齐序列的U-NET。对于对齐场景,我们的ALI-U-NET神经网络已经接受过培训,在大多数情况下,它比MAFFT,T-Coffee,Muscle和Clustal Omega等程序更准确,同时比单个CPU核心上的类似准确的程序快得多。的限制是,神经网络仍针对某些对齐问题进行了专门训练,并且对于以前从未见过的差距分布而表现不佳。此外,该算法当前与48×48或96×96核苷酸的固定尺寸比对窗口一起工作。在此阶段,我们将研究视为概念证明,确信目前的发现可以扩展到更大的一致性,并在不久的将来将其扩展到更复杂的一致性方案。
摘要 - 目的:基于卷积神经网络(CNN)的深度学习已使用头皮脑电图(EEG)在脑部计算机界面(BCIS)方面取得了成功。然而,对所谓的“黑匣子”方法的解释及其在立体情节摄影(SEEG)基于BCIS(SEEG)的BCIS中的应用仍然在很大程度上未知。因此,在本文中,对SEEG信号深度学习方法的解码性能进行了评估。方法:招募了三十例癫痫患者,并设计了包括五种手和前臂运动类型的范式。六种方法,包括过滤库公共空间模式(FBCSP)和五种深度学习方法(EEGNET,浅层和深CNN,Resnet,Resnet和一个名为STSCNN的深CNN变体),用于对SEEG数据进行分类。进行了各种实验,以研究Resnet和STSCNN的窗口,模型结构以及解码过程的影响。结果:EEGNET,FBCSP,浅CNN,DEEP CNN,STSCNN和RESNET的平均分类精度分别为35±6.1%,38±4.9%,60±3.9%,60±3.3%,61±3.2%和63±3.1%。对所提出方法的进一步分析表明,在光谱域中不同类别之间的可分离性明显。结论:重新连接和STSCNN分别达到了第一高的解码精度。STSCNN证明了额外的空间卷积层是有益的,并且可以从空间和光谱的角度部分解释解码过程。意义:这项研究是第一个研究Seeg信号深度学习的表现的研究。此外,本文证明了所谓的“黑盒”方法可以部分解释。
馈送前向神经网络是相关多体量子系统的新型变异波函数。在这里,我们提出了一个适用于具有实值波函数的系统的特定神经网络ANSATZ。它的特征是编码具有离散输出的卷积神经网络中量子波函数的最重要的坚固符号结构。通过进化算法实现其训练。我们在两个Spin-1 /2 Heisenberg型号上测试了我们的变异ANSATZ和训练策略,一种在二维方形晶格上,一个在三维的Pyrochlore晶格上。在前者中,我们的安萨兹(Ansatz)以高精度收敛到有序相的分析符号结构。在后者中,这种符号结构是未知的,我们获得的变异能量比其他神经网络状态更好。我们的结果证明了离散神经网络解决量子多体问题的实用性。
图4病例和亚组分析。a。 CFP和OCTA的图像代表性眼睛的图像。预测是由人类分级器(具有10年经验的眼科医生3)和GNN-MSVL模型(具有跳线n = 2)做出的。左:DMI阳性的眼睛,人类分级器和模型都正确预测了结果;中间:DMI阳性的眼睛,其中人类级别做出了错误的预测,而模型的预测是正确的;右:DMI阴性的眼睛和模型都正确地预测了结果。b。测试数据集中的DR分级和DMI存在。c。 GNN-MSVL模型(跳线n = 2)在不同的DR严重程度上进行的预测准确性。d。 GNN-MSVL模型(跳线n = 2)的示例DMI眼的CFP和OCTA图像做出了正确的预测。比例尺:0.5mm。
这项全面的基准测试研究探讨了三个著名的机器学习库的性能:Pytorch,带有Tensorflow后端的Keras和具有相同标准,软件和硬件的Scikit-Learn。评估包括两个不同的数据集:“学生表现”和“大学参加计划分类”,由Kaggle平台支持使用前馈神经网络(FNNS)作为建模技术。调查结果表明,Pytorch和Keras凭借Tensorflow Backend Excel在“大学参加计划分类”数据集中,Pytorch在这两个类别中都能达到无可挑剔的精度,召回和F1得分。虽然Scikit-Learn表现出值得称赞的性能,但在这种情况下,它落后于这些库。在“学生表现”数据集中,所有三个库都提供了可比的结果,而Scikit-Learn的精度最低为16%。带有Tensorflow后端的Keras和Pytorch的精度分别为23%。此外,当面对各种数据集类型时,本研究为每个图书馆的独特优势和缺点提供了宝贵的见解。pytorch成为要求需要高性能的任务的首选选择,而Scikit-Learn对于具有适度的计算需求的简单任务证明是有利的。带有张力的后端的凯拉斯在性能和用户友好之间取得平衡。这项基准测试努力为机器学习从业人员提供了宝贵的指导,以选择根据其项目要求量身定制的最合适的图书馆或框架。关键字 - 机器学习,Pytorch,Tensorflow,Scikit-Learn,神经网络它强调了图书馆选择在获得机器学习努力中的最佳结果中的关键作用。