小时候,我经常想知道人们的思想是如何工作的。在我在计算机科学和工程方面的培训中,我认为它的功能像发条一样,因此必须有一种算法。但是,在学习算法设计时,我遇到了逆问题,将人类解决问题的方式转化为计算机算法。这仅是针对基本问题的。对于人类来说,计算机/数学的简单性似乎极为困难。例如,对我们来说很难乘以大量,但对计算机来说很琐碎。相比之下,对于我们来说,对我们来说很简单的东西对于计算机/数学来说非常困难。当我学习AI作为课程的一部分时,这变得非常明显。我觉得我们需要研究自然智力的运作方式,然后才能真正地设计人工智能。研究计算神经科学是桥梁差距的自然发展。
摘要:汽车行业中的人工智能(AI)允许汽车制造商通过整合AI驱动的高级驾驶员辅助系统(ADAS)和/或自动化驾驶系统(ADS)(例如Traffiffififififient识别(TSR)系统),从而为智能和自动驾驶汽车提供智能和自动驾驶汽车。现有的TSR解决方案集中在他们认识的某些标志上。出于这个原因,提出了一种TSR方法,其中涵盖了更多的道路标志类别,例如警告,监管,强制性和优先符号,以构建一个智能和实时系统,能够分析,检测和分类为正确类别。提出的方法基于对不同的特征符号检测(TSD)和Traffim符号分类(TSC)的概述,旨在在准确性和处理时间方面选择最佳的特征。因此,提出的方法将HAAR级联技术与深CNN模型分类结合在一起。开发的TSC模型在GTSRB数据集上进行了培训,然后在各种路标上进行了测试。所达到的测试精度率达到98.56%。为了提高分类性能,我们提出了一个新的基于注意力的深卷积神经网络。由于获得的测试准确性和F1测量率分别达到99.91%和99%,因此所达到的结果比其他符号分类研究中存在的结果更好。在Raspberry Pi 4板上评估并验证了开发的TSR系统。实验结果证实了建议的方法的可靠性。
人类大脑利用尖峰进行信息传输,并动态地重组其网络结构,以提高能源效率和认知能力的整个生命周期。从这种基于尖峰的计算中汲取灵感,已开发出尖峰神经网络(SNN)来构建模仿该效率的事件驱动的模型。尽管有这些进步,但在训练和推断期间,深SNN仍遭受过度参数化,与大脑自我组织的能力形成鲜明对比。此外,由于静态修剪比率保持最佳的修剪水平,现有的稀疏SNN受到挑战,导致下降或过度修剪。在本文中,我们为深SNN提出了一种新型的两阶段动态结构学习方法,旨在从头开始进行有效的稀疏训练,同时优化压缩效率。第一阶段使用PQ索引评估了SNN中现有稀疏子网络的可压缩性,这促进了基于数据压缩见解的突触连接的重新线的自适应确定。在第二阶段,这种重新布线的比率严格告知动态突触连接过程,包括修剪和再生。这种方法显着改善了对深SNN中稀疏结构训练的探索,从压缩效率的角度来动态地调整稀疏性。我们的实验表明,这种稀疏的训练方法不仅与当前的深SNNS模型的性能保持一致,而且还显着提高了压缩稀疏SNN的效率。至关重要的是,它保留了使用稀疏模型启动培训的优势,并为将AI授予神经形态硬件的边缘提供了有前途的解决方案。
费米子多体量子系统的数值建模介绍了各个研究领域的类似challenges,需要使用通用工具,包括现状的机器学习技术。在这里,我们介绍了Solax,这是一个python库,旨在使用第二个量化的形式主义来计算和分析费米子量子系统。Solax提供了一个模块化框架,用于构建和操纵基础集,量子状态和操作员,促进电子结构的模拟并确定有限尺寸的Hilbert空间中的多体量子状态。库集成了机器学习能力,以减轻大量子群中希尔伯特空间尺寸的指数增长。使用最近开发的Python库Jax实现了核心低级功能。通过将其应用于单个杂质Anderson模型的应用,为研究人员提供了一种灵活而强大的工具,可用于应对各种领域的多体量子系统的挑战,包括原子物理学,量子化学和凝结物理学。
Boxin Huang、Yong He、Elrade Rofaani、Feng Liang、Xiaochen Huang 等人。人类诱导多能干细胞在纳米纤维膜阵列单层上向同步神经网络自动分化。Acta Biomaterialia,2022 年,150,第 168-180 页。�10.1016/j.actbio.2022.07.038�。�hal-03818522�
基于CRISPR的单细胞转录组筛选是有效的遗传工具,可同时评估由一组指南RNA(GRNA)靶向的细胞的表达式,并从观察到的扰动中推断靶基因函数。然而,由于各种局限性,这种方法在检测弱扰动方面缺乏灵敏度,并且在研究主调节器(例如转录因子)时基本上是可靠的。为了克服检测微妙的GRNA诱导的转录组扰动和对响应最快的细胞进行分类的挑战,我们开发了一种新的监督自动编码器神经网络方法。我们稀疏的监督自动编码器(SSAE)神经网络提供相关特征(基因)和实际扰动细胞的选择。我们将此方法应用于基于基于缺氧的长期非编码RNA(LNCRNA)的子集的基于内部单细胞CRISPR干扰(CRISPRI)转录组筛查(CROCPRI)转录组筛选(CROP-SEQ),该子集受缺氧调节的疾病,该疾病在肺腺癌(Lung adenacoarcinoma)(LUAD)的背景下促进了肿瘤的侵略性和耐药性。针对LNCRNA的子集进行了经过验证的GRNA的农作物序列库,并且作为阳性对照,HIF1A和HIF2A(低氧反应的2个主要转录因子)在3、6或24 h期间在正态氧中培养的A549 LUAD细胞中转导的2个主要转录因子。我们首先通过确定在低氧反应的时间开关期间确定其敲低的特定效应,从而验证了HIF1A和HIF2上的SSAE方法。接下来,SSAE方法能够检测出稳定的短缺氧依赖性转录组特征,该特征是由某些LNCRNA候选者的敲低诱导的,表现优于先前发表的
具有扩展Hubbard功能(DFT + U + V)的密度功能理论提供了一个可靠的框架,可以准确描述包含过渡金属或稀有元素的复杂材料。它是通过减轻半本地功能固有的自我相互作用误差来做到的,该误差在具有部分填充D和F电子状态的系统中特别明显。但是,在这种方法中实现准确性取决于现场U和现场v哈伯德参数的准确确定。在实践中,这些是通过半经验调整,需要先验知识或更正确地通过使用预测但昂贵的第一原理计算来获得的。在这里,我们提出了一种基于模棱两可的神经网络的机器学习模型,该模型使用原子占用矩阵作为描述符,直接捕获了手头系统的电子结构,局部化学环境和氧化状态。我们在这里以迭代性线性响应计算为单位计算的哈伯德参数的预测,如密度功能性扰动理论(DFPT)和结构放松。值得注意的是,当对跨越各种晶体结构和组成的12个材料的数据进行培训时,我们的模型分别达到了Hubbard U和V参数的平均相对误差,分别为3%和5%。通过规避计算昂贵的DFT或DFPT自洽协议,我们的模型可以显着加快用可忽略的计算开销的哈伯德参数的预测,同时接近DFPT的准确性。此外,由于其可靠性的可传递性,该模型通过高通量计算促进了加速的材料发现和设计,与各种技术应用相关。
摘要卷积神经网络(Lecun and Bengio 1998脑理论与神经网络手册255-58; Lecun,Bengio和Hinton 2015 Nature 521 436-44)在现代信号处理和机器视觉中是最先进的,无处不在。如今,基于新兴纳米版的硬件解决方案旨在减少这些网络的功耗。 这是通过使用实现卷积滤波器并顺序乘以输入的连续子集的设备,或者通过使用不同的一组设备来并行执行不同的乘法,以避免将中间计算步骤存储在内存中。 SpinTronics设备由于提供了各种神经和突触功能,因此可以进行信息处理。 然而,由于其低/偏高/比率,在单个步骤中使用横杆式旋转记忆阵列进行卷积所需的所有乘法将导致偷偷摸摸的路径电流。 在这里,我们提出了一个建筑,其中突触通信基于共振效果。 这些突触通信具有频率选择性,可防止由偷偷摸摸电流引起的串扰。 我们首先演示了一系列自旋谐振器如何通过依次校正编码连续输入集的射频信号来充当突触并进行卷积。 我们表明,具有多个自旋谐振器的多个链可以实现并行实现。 我们为这些链条提出了两种不同的空间布置。如今,基于新兴纳米版的硬件解决方案旨在减少这些网络的功耗。这是通过使用实现卷积滤波器并顺序乘以输入的连续子集的设备,或者通过使用不同的一组设备来并行执行不同的乘法,以避免将中间计算步骤存储在内存中。SpinTronics设备由于提供了各种神经和突触功能,因此可以进行信息处理。然而,由于其低/偏高/比率,在单个步骤中使用横杆式旋转记忆阵列进行卷积所需的所有乘法将导致偷偷摸摸的路径电流。在这里,我们提出了一个建筑,其中突触通信基于共振效果。这些突触通信具有频率选择性,可防止由偷偷摸摸电流引起的串扰。我们首先演示了一系列自旋谐振器如何通过依次校正编码连续输入集的射频信号来充当突触并进行卷积。我们表明,具有多个自旋谐振器的多个链可以实现并行实现。我们为这些链条提出了两种不同的空间布置。对于每个人,我们解释了如何同时调整许多人工突触,从而利用了突触重量共享特定的卷积。我们通过使用自旋振荡器作为人工微波神经元来展示如何通过使用自旋振荡器在卷积层之间传输信息。最后,我们模拟了这些射频谐振器和自旋振荡器的网络,以求解MNIST手写数字数据集,并获得与软件卷积神经网络相当的结果。由于它可以与纳米设备的单一步骤完全平行运行卷积神经网络,因此本文提出的架构对于需要机器视觉的嵌入式应用程序(例如自主驾驶)很有希望。
摘要。基于文档分类目的的基于艺术神经网络(NN)的方法的一个主要缺点是获得有效分类所需的大量培训样本。最低要求的数字约为每个班级的一千个注释的文档。在许多情况下,在实际的工业过程中收集这一数量的样本非常困难,即使不是不可能。在本文中,我们根据公司文档流的情况来分析基于NN的文档分类系统的效率。我们评估了三种不同的方法,一种基于图像内容,两种基于文本内容。评估分为四个部分:参考案例,以评估实验室中系统的性能;每种情况都模拟了两种情况,这些情况很难与文档流处理相关联;以及一个结合了所有这些困难的现实情况。现实的案例强调了一个事实,即基于NN的文档分类系统的效率显着下降。尽管它们对于代表良好的类(对于这些类别的系统过度拟合)仍然有效,但他们不可能处理适当的代表性较低的班级。nn基于文档的分类系统需要适应以解决这两个问题,然后才能将其视为在公司文档流中使用。
脉冲神经网络 (SNN) 是神经形态计算的一个分支,目前在神经科学应用中用于理解和建模生物大脑。SNN 还可能用于许多其他应用领域,例如分类、模式识别和自主控制。这项工作提出了一个高度可扩展的硬件平台 POETS,并使用它在大量并行和可重构的 FPGA 处理器上实现 SNN。当前系统由 48 个 FPGA 组成,提供 3072 个处理核心和 49152 个线程。我们使用该硬件实现了多达四百万个神经元和一千个突触。与其他类似平台的比较表明,当前的 POETS 系统比 Brian 模拟器快二十倍,比 SpiNNaker 快至少两倍。