人工神经网络(ANN)是一种受人脑的结构和功能启发的机器学习算法。在供应链管理的背景下,可以将ANN用于需求预测,库存优化,物流规划和异常检测。ANN帮助公司优化其库存水平,生产计划和治疗活动,以提高零件生产的生产率。通过考虑多个变量和约束,ANN可以确定最有效的路线,有效地分配资源并降低成本。此外,ANN可以识别供应链数据中的异常情况以及异常情况,例如意外需求模式,质量问题和物流运营中的破坏,以最大程度地减少其对供应链的影响。ANN还可以分析供应商绩效数据,包括质量,交付时间和定价,以评估供应商的可靠性和有效性。此信息可以支持供应商评估和选择过程中的决策过程。此外,ANN可以不断监视助理性能,提高与预定义标准偏差的警报,以在部分生产过程中提供安全可靠的供应链。通过分析包括天气状况和政治不稳定在内的各种数据来源,ANN可以在供应链过程的安全性方面识别和减轻风险。在研究工作中研究了供应链管理中的人造神经网络,以分析和增强部分制造过程中供应链管理的性能。通过审查和分析人工神经网络在供应链管理中的应用中的最新成就来介绍未来研究工作的新想法和概念。因此,可以通过使用人工神经网络来实现供应链管理来提高零件制造的生产率。
摘要:随着智能电网发展的急剧增长以及当前在开发测量基础设施方面的进步,短期功耗预测最近引起了人们的关注。实际上,未来电力负载的预测是避免能源浪费并建立有效的电力管理策略的关键问题。此外,可以将能源消耗信息视为历史时间序列数据,这些数据需要提取所有有意义的知识,然后预测未来的消费。在这项工作中,我们的目标是建模并比较三种不同的机器学习算法,以进行时间序列的预测。所提出的模型是长的短期记忆(LSTM),门控复发单元(GRU)和Drop-gru。我们将使用功耗数据作为我们的时间序列数据集,并相应地进行预测。LSTM神经网络在这项工作中受到青睐,以预测未来的负载消耗并防止消耗峰值。为了对该方法进行全面的评估,我们在某些法国城市中使用了实际数据功耗进行了几项实验。在各个时间范围内的实验结果表明,LSTM模型比GRU和Drop-gru预测方法产生更好的结果。的预测错误较少,其精度是更详细的。因此,这些基于LSTM方法的预测将使我们能够提前做出决策,并在消费超过授权阈值的情况下触发负载脱落。这将对计划电源质量和维护动力设备产生重大影响。
向前发展:垂直农业如何融合技术能力和古老的农艺知识来改变世界 - (Videopillola)Castrogiovanni Antonino国家形象和购买的意愿:绿色产品形象在消费者感知中的中介作用
深度学习方法已显示出在医学图像分析 [1] 中的高性能潜力,尤其是计算机辅助诊断的分类。然而,解释它们的决策并非易事,这可能有助于获得更好的结果并了解它们的可信度。已经开发了许多方法来解释分类器的决策 [2]–[7],但它们的输出并不总是有意义的,而且仍然难以解释。在本文中,我们将 [8] 的方法改编为 3D 医学图像,以找出网络对定量数据进行分类的基础。事实上,定量数据可以从不同的医学成像模式中获得,例如用正电子发射断层扫描 (PET) 获得的结合电位图或从结构磁共振成像 (MRI) 中提取的灰质 (GM) 概率图。我们的应用重点是检测阿尔茨海默病 (AD),这是一种诱导 GM 萎缩的神经退行性综合征。我们使用从 T1 加权 (T1w) MRI 中提取的 GM 概率图(萎缩的代理)作为输入。该过程包括两个不同的部分:首先训练卷积神经网络 (CNN) 以将 AD 与对照对象进行分类,然后固定网络的权重并训练掩码以防止网络正确分类训练后已正确分类的所有对象。这项工作的目标是评估最初为自然图像开发的可视化方法是否适用于 3D 医学图像,并利用它来更好地理解分类网络所做的决策。这项工作是原创作品,尚未在其他地方提交。
人们认为,人类能够自适应地执行各种任务的能力源自认知信息的动态转换。我们假设这些转换是通过连接枢纽(选择性整合感觉、认知和运动激活的大脑区域)中的连接激活来实现的。我们利用最近使用功能连接来映射大脑区域之间活动流的进展,在认知控制任务期间从 fMRI 数据构建任务执行神经网络模型。我们通过模拟这个经验估计的功能连接模型上的神经活动流来验证连接枢纽在认知计算中的重要性。这些经验指定的模拟通过在连接枢纽中整合感觉和任务规则激活产生了高于偶然的任务表现(运动反应)。这些发现揭示了连接枢纽在支持灵活认知计算方面的作用,同时证明了使用经验估计的神经网络模型深入了解人类大脑认知计算的可行性。
摘要 — 脉冲神经网络 (SNN) 凭借其潜在的节能、低延迟和持续学习能力,处于神经形态计算的前沿。虽然这些功能非常适合机器人任务,但迄今为止,SNN 在该领域的应用有限。这项工作引入了一种用于视觉位置识别 (VPR) 的 SNN,它既可以在几分钟内训练,又可以在几毫秒内查询,非常适合部署在计算受限的机器人系统上。我们提出的系统 VPRTempo 使用抽象的 SNN 克服了训练和推理时间缓慢的问题,该 SNN 以生物现实性换取效率。VPRTempo 采用时间代码,根据像素的强度确定单个脉冲的时间,而之前的 SNN 则依赖于确定脉冲数量的速率编码;将脉冲效率提高了 100% 以上。 VPRTempo 使用脉冲时间依赖性可塑性和监督增量学习规则进行训练,强制每个输出脉冲神经元只对一个位置做出反应。我们在 Nordland 和 Oxford RobotCar 基准定位数据集上评估了我们的系统,这些数据集包含多达 27,000 个位置。我们发现 VPRTempo 的准确性与之前的 SNN 和流行的 NetVLAD 位置识别算法相当,同时速度快几个数量级,适合实时部署 - CPU 上的推理速度超过 50 Hz。VPRTempo 可以作为在线 SLAM 的环路闭合组件集成到资源受限的系统(例如太空和水下机器人)上。
摘要背景:人们尚未找到最佳方法来自动捕获、分析、组织和合并结构和功能性脑磁共振成像(MRI)数据,以最终提取相关信号,协助缺氧昏迷患者床边的医疗决策过程。我们的目标是开发和验证一种深度学习模型,以利用多模态3D MRI全脑时间序列对缺氧缺血性昏迷相关的脑损伤进行早期评估。方法:这项概念验证、前瞻性、队列研究于 2018 年 3 月至 2020 年 5 月期间在大学医院(法国图卢兹)附属的重症监护室进行。所有患者在心脏骤停后至少 2 天(4±2 天)处于昏迷状态时接受扫描。在同一时期,我们招募并纳入年龄匹配的健康志愿者。脑 MRI 量化包括来自感兴趣区域(楔前神经和后扣带皮层)的“功能数据”和全脑功能连接分析以及“结构数据”(灰质体积、T1 加权、各向异性分数和平均扩散率)。专门设计的 3D 卷积神经元网络 (CNN) 通过使用原始 MRI 指标作为输入来区分意识状态(昏迷与对照)。基于卷积滤波器研究的体素可视化方法被用于支持 CNN 结果。法国图卢兹大学教学医院伦理委员会 (2018-A31) 批准了这项研究,并获得了所有参与者的知情同意。结果:最终队列包括 29 名缺氧后昏迷患者和 34 名健康志愿者。通过结合不同的 MR 指标使用 3D CNN 成功将昏迷患者与对照区分开来。功能性 MRI 数据(尤其是后扣带皮层的静息态功能性 MRI)的准确率最高,经过 10 次重复的十倍交叉验证,测试集的准确率为 0.96(范围为 0.94-0.98)。通过多数投票策略,可以实现更令人满意的表现,这可以弥补
摘要 - 您可能已经听说大脑是塑料的。您知道大脑不是由塑料制成的,大脑可塑性也称为神经可塑性。大脑可塑性是一个物理过程。灰质实际上可以缩小或增厚神经连接可以锻造,精制或削弱和切断。大脑可塑性是指大脑在一生中改变的能力。大脑具有通过在脑细胞(神经元)之间形成新的连接来重组自身的惊人能力。很长一段时间以来,人们相信,随着我们的年龄,大脑的连接变得固定。研究表明,实际上大脑永远不会通过学习来改变。可塑性是大脑随着学习而改变的能力。与学习相关的变化主要发生在神经元之间的连接水平上。可以形成新的连接,现有突触的内部结构可能会改变,但也可以根据所收到的外部刺激和前面存在的连接而部分地进行内部拓扑。我们发现这个想法也可以应用于简单的人工神经网络。在本文中,我们提出了一种新方法,以动态地适应人工神经网络的拓扑,仅使用学习集中的信息。以及在本文中,我们提出的算法已经在结果上相对于多层感知器(MLP)问题进行了测试。索引术语 - 学习,神经可塑性,多层感知(MLP),人工神经网络(ANN),神经元,大脑,突触。