FH8550M 是一款用于 CIS(CMOS 图像传感器)的高性能 ISP,适用于内置 HDcctv Tx 的专业监控 CCTV 摄像机。FH8550M 支持 1M/1.3M/2M 4 通道 CIS MIPI 接口。其模拟视频输出支持标准 CVBS/960H/1280H 和 720P/1080P HDcctv 标准。FH8550M 具有高性能 3D 降噪、2 帧逐行 WDR 和动态像素校正模块。它还具有 TOSD/GOSD、PM、MD 和 AF 统计模块以及 SADC 和 PWM 接口。
痴呆症是一种近年来患者数量不断增加并已成为重大社会问题的疾病,因此有必要尽早发现它。东京大学医院老年病科秋下昌弘教授、龟山由美助理教授(特别讲师(医院))团队与东京都老年医学研究所诊断放射学科主任龟山正志博士合作,在世界上首次证明了人工智能(AI;注1)可以区分认知障碍患者和健康人的面部照片。面部识别有望成为一种非侵入性、省时且廉价的早期发现痴呆症的方法。 此项研究得到了日本医疗研究发展机构(AMED)痴呆症研究与发展项目的支持,并于日本时间1月26日发表在美国科学期刊《衰老》(纽约州奥尔巴尼)上。 4.演讲内容: (1)研究背景 痴呆症是老龄化社会中最严重的问题之一,早期诊断将在未来的治疗策略中变得非常重要。然而,痴呆症的诊断测试有各种局限性。例如,淀粉样蛋白PET(注2)检测费用非常昂贵,而且脑脊液的采集具有侵入性。因此,需要一种简单、非侵入性且廉价的痴呆症筛查方法。 此外,由于衰老是一个系统性的过程,因此从面部判断的外表年龄被认为是预期寿命、动脉硬化和骨质疏松症的指标。此前,东京大学医院老年病科的秋下昌弘教授和龟山由美助理教授(特任讲师(医院))等研究小组也报告称,表观年龄与认知功能的相关性强于实际年龄(Umeda-Kameyama Y et al., “Cognitive function has a stronger correlation with perceived age than with chronological age”, Geriatr Gerontol Int, 2020;20: 779–784, doi:10.1011/ggi.13972.)。 因此,研究小组研究了是否可以使用人工智能(AI)从面部信息中检测认知能力下降。 (二)研究内容
[福岛19] S. Fukushima:复杂社会中决策与共识构建支持技术发展趋势,人工智能,第34卷,第2期,第131-138页(2019年) [福岛21] S. Fukushima:人工智能研究新趋势:日本的制胜策略,JST CRDS报告,CRDS-FY2021-RR-01(2021年) [福田19] N. Fukuda、S. Fukushima、T. Ito、T. Taniguchi、M. Yokoo:复杂社会中决策与共识构建的AI技术,人工智能,第34卷,第6期,第863-869页(2019年) [郝19] 郝K.:DeepMind希望教AI玩比围棋更难的纸牌游戏,麻省理工学院技术评论,2月5日, 2019,https://www.technologyreview. com/2019/02/05/137577/deepmind-wants-to-teach-ai-how-to-play-a-card-game-thats-harder-than-go/ (2019) [HBR 19] 专题:假新闻,DIAMOND《哈佛商业评论》,2019 年 1 月刊,第 16-82 页 (2019) [Ito 17] Ito, T.、Fujita, K.、Matsuo, N.、Fukuda, N.:基于代理技术创建大规模共识构建支持系统 ─ 迈向实现自动协助代理 ─,人工智能,第 32 卷,第 5 期,第 739-747 页 (2017) [Ito 20] Ito, T.、Suzuki, S.、Yamaguchi, N.、Nishida、T.、Hiraishi、K. 和 Yoshino、K.:D-Agree:基于自动化辅助代理的群体讨论支持系统,第 34 届 AAAI 人工智能会议论文集,第 13614-13615 页 (2020) [Kimura 18] Kimura、Y.、Fukushima、S. 等人:支持复杂社会决策和共识建立的信息科学与技术,JST CRDS 战略提案,
翻译研究需要生物组织多个尺度的数据。测序和多摩学技术的进步提高了这些数据的可用性,但研究人员面临着重大的整合挑战。知识图(kgs)用于对复杂现象进行建模,并存在自动构造它们的方法。但是,解决复杂的生物医学整合问题需要在知识建模的方式上灵活。此外,现有的KG施工方法提供了强大的工具,以固定或有限选择的成本在知识表示模型中。pheknowlator(表型知识翻译器)是一个语义生态系统,用于自动化公平(可访问,可访问,可互操作和可重复使用的)本体理学基础KGS的构建,具有完全可定制的知识表示。生态系统包括kg施工资源(例如,数据准备API),分析工具(例如,SPARQL端点资源和抽象算法)和基准(例如,预构建KGS)。我们通过系统地将其与现有的开源kg施工方法进行了系统的比较,并分析其计算性能时,我们评估了生态系统。具有灵活的知识表示,Pheknowlator可以完全自定义的KG,而不会损害性能或可用性。
生物医学知识图(BKG)已成为组织和利用整个生物医学领域发现的庞大而复杂的数据的强大工具。然而,当前对BKG的评论通常将其范围限制在特定的领域或方法上,从而忽略了更广泛的景观和快速的技术进步来重塑它。在本调查中,我们通过从三个核心角度提供对BKG的系统审查来解决这一差距:域,任务和应用程序。我们首先研究了如何从不同的数据源构建的BKG,包括分子相互作用,药理数据集和临床记录。接下来,我们讨论BKGS启用的基本任务,重点是知识管理,检索,推理和解释。最后,我们重点介绍了精确医学,药物发现和科学研究中的现实世界应用,这说明了BKG在多个领域的翻译影响。通过将这些观点综合为一个统一的框架,这项调查不仅阐明了BKG研究的当前状态,而且为将来的探索建立了基础,从而实现了创新的方法论进步和实践实现。
“知识图”一词自1972年以来就已经存在,但是当前的定义可以追溯到2012年的Google。随后是Airbnb,Amazon,Ebay,Facebook,IBM,LinkedIn,Microsoft和Uber等公司的类似公告,从而导致各种行业采用知识图(KG)。因此,近年来,该领域的学术研究激增,关于KGS的科学出版物越来越多[1]。这些图是利用基于图的数据模型来有效地管理,集成和提取来自大型和多样化数据集的宝贵见解[2]。kgs是结构化知识的存储库,组织成三联的集合,被指定为𝐾𝐺=(ℎ,𝑟,𝑡)⊆×𝑅×𝐸×𝐸×𝐸,其中e代表实体集,r代表关系的集合[1]。在图中,节点表示各个层次,实体或概念。这些节点包括各种类型,包括人,书籍或城市,并与位于,生活或与之合作之类的关系相互联系。kg的本质融合了多种类型的关系,而不是仅限于单一类型。kg的总体结构构成了一个实体网络,其语义类型,属性和互连。因此,构建kg需要有关
由于暴风雨的直接破坏性和分散性质,福尔摩山白蚁最终可能在这些地区更加普遍。白蚁也可以通过人类活动(例如持续的清理,去除侵扰树木,覆盖物的运输,碎屑等)来移动。以及拆除感染的建筑物和建筑组件。这些物品中的许多可能最终都陷入垃圾填埋场,沟渠,牧场,乡村地区,沼泽等,因此,福尔摩山白蚁压力可能更加广泛,并且随着时间的流逝更加严重。本地白蚁也可以以相同的方式传播。