摘要 当角膜微粒体在 NADPH 生成系统存在下与花生四烯酸一起孵育时,会形成四种极性代谢物(化合物 AD)。一氧化碳、SKF 525A 和抗细胞色素 c 还原酶抗体可抑制这些代谢物的合成。发现其中一种代谢物化合物 C 以剂量依赖性方式抑制角膜上皮中部分纯化的 Na+,K+-ATPase,ID5o 为 =50 nM。化合物 C 经薄层色谱和高效液相色谱纯化后,发现其具有紫外吸收光谱,最大吸光度在 236 nm 处,表明存在共轭二烯。使用正负离子化模式对衍生化合物 C 进行质谱分析,该化合物由特定标记的([5,6,8,9,11,12,14,15-2H8J 花生四烯酸)和未标记的花生四烯酸的混合物合成。丰富的碎片离子与化合物 C 一致,化合物 C 是花生四烯酸的单氧衍生物,在二十碳烷主链的碳 12 处有羟基取代基;[2HgJ 花生四烯酸中的所有氘原子都保留在结构中。氧化臭氧分解产生的产物表明 20 碳链的 10 和 11 位置以及 14 和 15 位置的碳之间存在双键。因此,化合物 C 被定性为 12-羟基二十碳四烯酸。然而,只有 12(R) 异构体被发现是角膜上皮中 Na+,K+-ATPase 的抑制剂,这表明生物活性化合物 C 是 12(R)-羟基-5,8,10,14-二十碳四烯酸。这种在角膜中合成的 Na+,K+-ATPase 抑制剂可能在调节眼球透明度和人体房水分泌方面发挥重要作用。
胶质母细胞瘤手术切除是神经外科医生的问题任务。肿瘤完全切除可提高患者的愈合机会和预后,而过度切除可能导致神经缺陷。然而,外科医生的视力几乎无法追溯肿瘤的范围和边界。的确,大多数手术过程都会导致小计切除术。组织病理学测试可能会完全消除肿瘤,尽管由于组织检查所需的时间是不可行的。几项研究报告了具有独特的分子特征和特性的肿瘤细胞。高光谱成像(HSI)是一种新兴的,非接触,非离子化,无标签和微创光学成像技术,能够在分子水平上提取有关观察到的组织的信息。在这里,我们利用了广泛的数据增强,转移学习,U-NET ++和DEEPLAB-V3+体系结构,以执行术中胶质母细胞瘤性超光谱图像的自动端到端分割,以符合竞争性处理时间和涉及金额标准过程的竞争性处理时间和细分结果。基于旋转框架提供的地面真理,我们大大改善了HSIS的处理时间,从而实现了针对手术开放式颅骨手术期间实时加工的胶质母细胞瘤的端到端分段,从而改善了金标准ML Pipeline。我们测量了有关MATLAB 2020a提供的标准CUDA环境的竞争推论时间。此外,我们在定性和定量上评估了分割结果。最快的平行版本最快的螺旋叶素得以阐述数据库中最突出的图像,而我们的方法论则在0.29±0.17 s中执行分割推断,因此对处理对处理的21秒构成了实时符合性的约束。
摘要:尽管基因编辑取得了令人兴奋的进展,但将基因工具有效递送至肝外组织仍然具有挑战性。对于皮肤来说尤其如此,因为皮肤构成了高度限制性的递送障碍。在本研究中,我们对 Cas9 mRNA 或载有核糖核蛋白 (RNP) 的脂质纳米颗粒 (LNP) 进行了正面比较,以将基因编辑工具递送到人体皮肤的表皮层,旨在进行原位基因编辑。我们观察到了不同的 LNP 组成和细胞特异性效应,例如 RNP 在慢循环上皮细胞中存在时间长达 72 小时。虽然使用 Cas9 RNP 和基于 MC3 的 LNP 的 mRNA 获得相似的基因编辑率 (10 − 16%),但载有 mRNA 的 LNP 被证明具有更大的细胞毒性。有趣的是,ap K a ∼ 7.1 的可离子化脂质在二维 (2D) 上皮细胞中产生了较高的基因编辑率 (55% − 72%),同时没有检测到单个向导 RNA 依赖的脱靶效应。出乎意料的是,这些高 2D 编辑效率并没有转化为实际的皮肤组织,在单次应用后,无论 LNP 组成如何,总体基因编辑率都在 5% − 12% 之间。最后,我们成功地对常染色体隐性先天性鱼鳞病患者细胞中的致病突变进行了碱基校正,功效约为 5%,展示了该策略在治疗单基因皮肤病方面的潜力。总之,这项研究证明了原位校正皮肤致病突变的可行性,可以为罕见、单基因和常见皮肤病提供有效的治疗,甚至可能治愈。关键词:脂质纳米粒子、基因传递、基因编辑、皮肤、ARCI、遗传性皮肤病、碱基编辑 E
伊恩·亨特 (Ian Hunter) 教授是机械工程系的 Hatsopoulos 教授,并负责麻省理工学院的生物仪器实验室 ( http://bioinstrumentation.mit.edu )。伊恩出生于新西兰,自小就对科学、工程和仪器感兴趣,这种兴趣一直持续到现在。他 9 岁时就创办了自己的第一家公司,10 岁时就发表了第一篇论文(一种微型单晶体管收音机的设计),14 岁时就建造了一个功能齐全的气液色谱仪(氢火焰离子化型),用于化学分析。从奥克兰大学获得学士、硕士和博士学位后,他在加拿大麦吉尔大学生物医学工程系完成了博士后研究。随后,他加入麦吉尔大学任教,并晋升为生物医学工程系终身副教授。1994 年,伊恩将他的实验室搬到了麻省理工学院机械工程系。他的主要研究领域是仪器仪表、微型机器人、医疗设备和仿生材料。多年来,他和他的学生开发了许多仪器和设备,包括:共聚焦激光显微镜、扫描隧道电子显微镜、微型质谱仪、新型拉曼光谱、无针药物输送技术、纳米和微型机器人、微型手术机器人、机器人内窥镜、高性能洛伦兹力马达以及用于大规模并行化学和生物测定的微阵列技术。作为其研究成果,Ian 发表了 500 多篇出版物。他还根据这项研究发明了仪器和设备。这已导致 150 多项已颁发和正在申请的专利。最后,Ian 的发明已被众多公司使用,此外,他还创立或共同创立了 25 多家公司。伊恩热爱教学,曾获得麻省理工学院多项教学奖项,包括基南本科教育创新奖、阿玛尔博斯教学卓越奖和丹哈托格杰出教育家奖。
上下文。Venus的Co 2较厚的大气与电离层共存,该电离层主要是通过太阳能极端紫外线和软X射线光子的大气中性的电离来形成的。尽管进行了广泛的建模工作,但对电子分布的重现得很好,但我们注意到与先前的研究有关的两个主要缺点。生产和库仑相互作用的影响对于揭示金星电离层的结构和组成至关重要。目标。我们首次评估了质子化物种对时代金星电离层结构的作用。我们还评估了离子库仑碰撞的作用,在许多现有模型中被忽略了。方法。专注于预计质子化效果更突出的太阳最小条件,我们为时代的维纳西亚电离层建立了一个详细的一维光化学模型,并结合了50个以上的离子和中性物种(其中17种是质子化的物种),以及最彻底的化学网络。我们包括离子中性和离子库仑碰撞。光电子影响过程是通过两流动力学模型实现的。结果。我们的模型可以很好地重现观察到的电子分布。该模型表明质子化倾向于通过一系列质子转移反应沿着低至高质子相关的质子转移反应来分散电离流到更多的通道中。结论。另外,在高海拔地区,质子化近2倍的质子化可以增强O + 2的分布,在该系数通过O和OH +之间的反应有效产生。我们发现,库仑碰撞不仅直接通过抑制离子扩散,而且通过修饰离子化学来影响顶部的金星电离层。可以根据库仑碰撞的作用来区分两个离子基:一个在高海拔地区优先生产并积聚在顶部离子室中的组,该组应与在低海拔地区优先生产的另一组进行比较,而在上层离子层中则耗尽。质子化和库仑碰撞都对顶部的金星电离层产生了明显的影响,这说明了这项研究和早期计算之间模型离子分布的许多显着差异。
背景:在各种成像技术中,提供替代肿瘤射线照相指标,以帮助计划,监测和预测治疗的结果,超声引导的光声成像(US-PAI)是一种基于内源性血液(血红蛋白)和血氧饱和(Sto)的非离子化模式。将US-PAI适应临床领域需要宏观系统配置,以实现足够的深度可视化。方法:在这里,我们提出了一种通过宏观PA图像的频域滤波来获取肿瘤内低血管密度区域(分别为LVD和HVD)的低血管密度区域(分别为LVD和HVD)的方法。在这项工作中,我们评估了胰腺癌不同鼠类异种移植物的各种血管和氧合谱(ASPC-1,MIA PACA-2和BXPC-3)具有不同水平的血管生成潜力,并研究了受体酪氨酸激酶抑制剂(Sunitibibsessssessssessssesss and tamor and tamor and tamor and tamor and tamor and tamor and tumor and tumor and tamor and tumor siltsess and tumor and tam and t tumor and tumor and tumor and t tumor and tumor and t tumor and t tumor and t tumor and₂结果:在这三种肿瘤类型的两种(ASPC-1和MIA PACA-2)中,舒尼替尼的给药导致72小时内血管密度的短暂脱氧和减小。利用VRA,STO 2(∆Sto 2)的区域变化揭示了仅在ASPC-1肿瘤中LVD区域中Sunitinib的优先靶向。我们还确定了在治疗后第8天治疗的Sunitinib处理过的ASPC-1肿瘤中的血管归一化(通过免疫组织化学验证)的存在,在72小时的时间点之后,HVD ∆Sto 2(〜20%)显着增加,表明血管流动和功能改善。与未经处理的肿瘤相比,经过处理的ASPC-1血管表现出的成熟度和功能增加,而这些相同的指标没有显示MIA PACA-2或BXPC-3肿瘤血管归一化的结论性证据。结论:总体而言,VRA作为监测治疗反应的工具,使我们能够识别血管重塑的时间点,突出显示其能够洞悉用于舒尼替尼治疗和其他抗血管生成疗法的肿瘤微环境的能力。
Carbopol ® 971P NF 聚合物 卡波姆均聚物 A 型 卡波姆 羧基乙烯基聚合物 Carbopol ® 974P NF 聚合物 卡波姆均聚物 B 型 卡波姆 羧基乙烯基聚合物 Carbopol ® 980 NF 聚合物 卡波姆均聚物 C 型 卡波姆 羧基乙烯基聚合物 Carbopol ® 5984 EP 聚合物 卡波姆均聚物 B 型 卡波姆 羧基乙烯基聚合物 Carbopol ® ETD 2020 NF 聚合物 卡波姆互聚物 B 型 --- --- Carbopol ® Ultrez 10 NF 聚合物 卡波姆互聚物 A 型 --- --- * 2006 年之后的 USP/NF Carbopol ® 聚合物分散体的 Brookfield 粘度 必须中和 Carbopol ® 聚合物才能达到最大粘度。在分散体中加入中和剂后,会逐渐变稠。最大粘度通常在 pH 值为 6.0 - 7.0 时达到。当 pH 值为 9.0 或更高时,Carbopol ® 聚合物的粘度将开始下降。这是由于存在过量电解质,它们会影响离子化羧基的静电排斥。为了在 pH 值低于 5 和高于 9 时获得高粘度,建议增加 Carbopol ® 聚合物的浓度。此外,应避免在低 pH 值下使用低浓度的聚合物,以实现稳定的配方。对浓度为 0.2 - 2.0 wt. % 的几种 Carbopol ® 聚合物的水分散体进行了布鲁克菲尔德粘度测量。图 2 - 7 显示了每种聚合物的一般行为,基于每种聚合物一批的数据。分散体在制备时(通常表示为 pH 3.0)或在用氢氧化钠溶液中和至 pH 4.0 - 7.0 后进行测试。聚合物浓度增加会导致粘度增加。一般而言,Carbopol ® 聚合物浓度越高,pH 值越容易达到稳定状态。图 2:pH 值和浓度对 Carbopol ® 971P NF 聚合物分散体粘度的影响
引言 1 一般背景 2 2.1 气味的定义 2 2.2 气味浓度与特征的区别 2 2.3 工业校准和标准化要求 2 恶臭气体标准的要求和实现 3 3.1 需要气味监测的工业过程 3 3.2 有气味物质的优先气体标准 5 3.2.1 二元标准 6 3.2.2 多组分标准 7 潜在客观嗅觉测量量表的研究 8 4.1 气味的分类 8 4.1.1 参考气味和“气味空间” 9 4.2 嗅觉分析(人体气味小组) 9 4.2.1 嗅觉分析的背景 9 4.2.2 气味小组测量 10 4.2.3 嗅觉计 12 4.2.4 气相色谱仪 (GC) 嗅探 13 4.2.5 气味值 13 4.3 气味感知理论 13 4.3.1 气味检测的生物模型 14 4.3.2 定量结构-活性关系 (QSARS) 14 4.3.3 分子振动-气味关系 15 4.4 非弹性电子隧道光谱 17 4.4.1 平面隧道光谱 17 4.4.2 扫描隧道显微镜技术 17 4.4.3 隧道光谱的模型计算 18 4.4.4 红外电子隧道光谱与气味之间的关系 20 4.4.5 红外吸收 23 有效的现场采样和测量方法 27 5.1 环境气味检测的要求27 5.2 取样方法 27 5.2.1 罐取样 27 5.2.2 吸附材料取样 28 5.3 测量方法 30 5.3.1 气相色谱法 (GC) 30 5.3.2 火焰离子化检测气相色谱法 (FlD) 31 5.3.3 硫化学发光法 32 5.3.4 气相色谱-质谱法 (GC-MS) 33 5.3.5 手性固定相气相色谱法 35 5.3.6 建议的环境气味分析方法 35 人工嗅觉计 (电子鼻) 的标准化和校准 37 6.1 电子鼻测量的背景 37 6.2 欧洲人工嗅觉感知网络 (NOSE) 38 6.3 标准化要求 38 结论40 7.1 气味标准 40
- NJIT开发了一种用于水和土壤样品中PFA(全氟烷基和多氟烷基化合物)的高速且高度敏感的检测技术。 -PFA,称为“永久化学品”,是一种在各种产品中发现的人造化合物,从食品包装材料到耐水服装,需要数千年的时间才能分解。有成千上万种不同的类型,当前的测试方法需要成本和时间,环境中的分布程度尚不清楚。 - 新技术包括一种称为造纸喷雾质谱法(PS-MS)的电离技术,该技术分析了样品材料的分子组成,并且比当前的PFAS标准测试方法高10至100倍。 -PFA被离子化并检测到,并且包含的各种PFA物种及其浓度清楚地显示到数万亿(PPT)水平。对于诸如土壤之类的复杂矩阵,使用脱盐的纸陶喷雾质谱法(DPS-MS)用于洗涤抑制PFA的离子信号的盐。这两种方法都显着提高了PFAS检测功能。 PFA的检测极限约为1 ppt,相当于20个奥林匹克大小的游泳池的一滴水。 - We directly analyzed fragments of various food packaging materials, including microwave cooking popcorn paper, instant noodle containers, and fried food and hamburger wrapping paper, and successfully detected traces of 11 types of PFAS molecules, including PFOA (perfluoroctanoic acid) and PFOS (perfluorooctanesulfonic acid), which are associated with cancer risk and suppression of the immune system, within 1 分钟。美国环境保护局(EPA)提议为全国饮用水中的六种PFA设定最大污染水平(MCLS),包括PFOA和PFO。 。- 此外,在2分钟内在局部自来水样品中检测到PFOA的痕迹。在大学的过滤春季样品中未发现PFA的痕迹。此外,使用DPS-MS从40毫克的土壤中识别出两种类型的PFA。我们还将证明空气中包含的PFA的检测能力。 - 还将进行测试,以将这些方法与NJIT BioSmart中心开发的PFA分解催化剂技术相结合。催化剂技术在3小时内分解了饮用水样品中98.7%的PFA。 - 这项研究得到了国家科学基金会(NSF)的支持。
视频:液体喷射光电光谱(LJ-PES)在对液体水,水溶液和挥发性液体的电子结构的实验研究中取得了突破。这种技术的新颖性可以追溯到25年以上,其中在于在真空环境中稳定连续的微米直径LJ,以实现PES研究。PES中的关键数量是与电子垂直促进到真空中的最可能的能量:垂直电离能量,vie,for中性和阳离子,或垂直脱离能量VDE,用于阴离子。这些数量可用于鉴定物种,其化学状态和粘结环境及其在溶液中的结构特性。准确测量VIE和VDE的能力至关重要。相关的主要挑战是针对明确定义的能源参考的确定这些数量。仅采用最近开发的方法是通常的测量,通常对液体可行。实际上,这些方法涉及将凝结的概念应用于从液体样品中获取光电子(PE)光谱中,而不是仅依赖自第一个LJ-PES实验以来通常实施的分子 - 物理处理。这包括在自由电子检测之前明确考虑电子遍及液体表面的遍历。与精确的电离光子能量一起,此功能可以直接确定VIE或VDE,相对于液相真空水平,从任何感兴趣的PE特征中都可以直接确定。我们相对于液态真空水平的测量VIE和VDE的方法特别涉及检测样品中发出的最低能量电子,这些电子的能量勉强能够克服表面电势并积聚在液态光谱的低能尾巴中。通过将足够的偏置电位应用于液体样品,通常可以暴露出这种低能的光谱尾部,其尖锐,低的能量截止均显示出在测得的光谱中揭示真正的动力学零,而与实验中的任何扰动固有或外部电位无关。此外,通过还确定凝结物质中常见平衡能级的溶液 - 相VIE和VDE,费米水平可以量化固态PES溶液溶液工作功能,Eφ和液体可效应表面偶极效应中普遍实现的参考能。使用LJS,只能通过控制不良的表面充电和所有其他外部电势来正确访问费米水平,从而导致所有PE特征的能量移动,并排除准确的电子能量访问。更具体地说,必须设计条件以最大程度地减少所有不良电位,同时保持样品和设备之间的平衡,内在的(接触)的电位差。建立这些液相准确的能量引用方案,重要的是,可以从近偏差溶液中确定VIE和VDE,以及批量电子结构和界面效应之间的定量区别。■密钥参考我们将在此处审查和示例这些方案,并在此处审查这些方案,并在此处进行几种示例性水溶液,重点关注最低的离子化或最低能源 - 能源PE峰,这与水相种类的氧化稳定性有关。