• 运营经理:B. CHEYMOL (IR),加速器和离子源极 • 科学协调:A. BILLEBAUD (DR),反应堆物理组 • 客户和网络支持(IRT,合同):M. BAYLAC (IR),加速器和离子源极 • 飞行员和真空专家:S. REY (IE),加速器和离子源极 • 飞行员和电子工程:E. LABUSSIERE (IE),加速器和离子源极
质子束直写 (PBW) 是由新加坡国立大学离子束应用中心 (CIBA-NUS) 开发的一种直写光刻技术,该技术利用聚焦质子来制造三维纳米结构 [1 – 3] 。与电子束光刻 (EBL) 相比,PBW 的优势在于质子比电子重 ~1800 倍,这使得质子传递给二次电子的能量更少,可以更直地穿透材料,并在光刻胶中沿其路径沉积恒定的能量 [4] 。凭借这些独特的特性,PBW 可以制造没有邻近效应且具有光滑侧壁的纳米结构 [3,5] 。目前,PBW 在光斑尺寸和吞吐量方面的性能受到 PBW 系统中射频 (RF) 离子源亮度较低 (~20 A/(m 2 srV)) 的限制 [6,7] 。因此高亮度离子源是进一步提升PBW系统性能的关键。降低的亮度是体现光束质量的重要参数,如束流密度、束流角度扩展和束流能量扩展[8,9]。减小虚拟源尺寸是获得高亮度离子源的一种实用方法[10]。高亮度离子源,如液态金属离子源 (LMIS) 和气体场电离源 (GFIS),具有较小的虚拟源尺寸。LMIS 是应用最广泛的高亮度离子源,其尖端顶部有一个液态金属储存器[11-13]。强电场用于将液态金属拉到尖锐的电喷雾锥,称为泰勒锥[14]。
工程纳米材料已成为微电子、航空航天、能源生产和储存、毒理学研究和医学应用等多个领域的深入研究焦点。开发新的表征方法和仪器是推动材料研究和开发的关键因素,从而提高产品性能和可靠性。分析挑战包括分析 10 纳米范围内的微小特征,这导致分析量和检测限之间的权衡。二次离子质谱 (SIMS) 是一种强大的表面分析技术,特别是它能够以出色的灵敏度和高动态范围检测所有元素并区分同位素。SIMS 允许获取质谱、进行深度剖析以及 2D 和 3D 成像。安装在最新一代 FIB 平台上的新型离子源(例如气体场离子源 (GFIS)、Cs + 低温离子源 (LoTIS) 或多物种液态金属合金离子源 (LMAIS))的开发为纳米级物体的分析开辟了新的可能性。在 FIB 仪器中添加 SIMS 功能不仅可以提供最高分辨率和灵敏度的成像,还可以提供在图案化和铣削过程中进行现场过程控制的工具 [1,2]。
LhARA 将集成尖端技术,包括:• 激光驱动质子和离子源:该组件产生短而强的脉冲,用于“FLASH”辐射和紧密聚焦的微型光束。与传统方法不同,LhARA 无需准直即可实现这一目标。• 电子等离子体(Gabor)透镜:激光驱动离子源产生高度发散的光束,具有很大的能量散度,每个脉冲的能量散度可变化高达 25%。Gabor 透镜是传统螺线管的经济高效的替代品,并具有强大的聚焦能力。• 使用固定场交变(FFA)梯度加速器进行后加速:将使用固定场交变梯度加速器进行快速加速,从而可以灵活调整离子束的时间、能量和空间结构。与英国主要离子源激光器和加速器研究所团体的合作确保了强劲的发展。• 患者定位的智能自动化。• 包括离子声成像在内的新型仪器和诊断技术。
摘要。在未来的融合设备(例如ITER或DEMO)上为NNBI系统的离子源开发是基于负氢离子的表面产生。因此,低工作函数转换器表面是强制性的。除了在离子源操作过程中连续注射的最新技术外,还需要替代材料来克服挥发性CS涂层的缺点。在这项工作中,研究了C12A7电气材料,涉及离子源相关条件下氢和血浆环境中的功能行为。活动期间获得的最低测量工作功能为2。9±0。1 eV,具有优化潜力,可在更好的真空条件下降低值和更高的退火温度。在血浆操作过程中偏见样品对工作功能性能的影响很大,这取决于极性和施加的偏差潜力。该实验中使用的C12A7电气获得的最小工作函数大大高于原位促进(〜2 eV)所获得的最小工作函数,但样品在血浆弹性方面表现出了有希望的特性。
摘要讨论了激光谐振电离技术在放射性离子束设备上产生的单个带电离子的生产中的应用。结合高效率和元素的选择性的abily是使谐振离子激光离子源(RILIS)成为许多放射性离子束设备的重要组成部分。在CERN,RILIS是Isolde设施中最常用的离子源,每年运营时间为3000小时。对于某些同位素,RILI也可以用作快速有意义的激光光谱工具,前提是光谱分辨率足够高以揭示核结构对原子光谱的影响。这可以研究具有生产率甚至低于每秒1个离子的同位素的核性质,在某些情况下,可以实现异构体选择性离子ization。总结了可用于在放射性离子束设备上实施共振激光离子的解决方案。涵盖了激光要求,离子源条件,选择性,效率和应用等方面。 还将描述在CERN ISOLDE设施实施的用于激光光束运输和控制,可靠性和易于操作的实际解决方案。涵盖了激光要求,离子源条件,选择性,效率和应用等方面。还将描述在CERN ISOLDE设施实施的用于激光光束运输和控制,可靠性和易于操作的实际解决方案。
Elaine Petro 教授 康奈尔大学 分子离子束和束表面相互作用的多尺度建模 电喷雾离子源是卫星推进、生化分析和各种表面处理行业领域的使能技术。这些应用推动了对扩展离子束的物理和粒子碰撞的化学的更深入了解。电喷雾离子羽流对最先进的等离子体建模技术提出了挑战,因为关键过程发生的长度和时间尺度范围很广(即纳米级发射点和厘米级操作体积)。伴随着这些空间梯度的是离子和中性群体中的大密度和速度梯度。此外,电喷雾羽流是具有非麦克斯韦分布的非中性等离子体。我们介绍了最先进的分子离子羽流动力学和化学数值模型,这些模型对于探索设计变量、了解操作条件和提高性能必不可少。除了卫星推进中的应用外,我们还将讨论在其他相关领域利用这些离子源的机会。
晚期分子图像技术(AMIT)超导回旋子的内部离子源使用纯tantalum制成的阴极生成高能H-离子束,以生产正电子发射断层扫描的同位素。在服务期间,阴极受到血浆中高能离子的影响。所产生的侵蚀会产生陨石坑,从而降低提取光束的电流密度。当离子源无法再激活时,最终需要更换阴极。这项研究探讨了通过激光金属沉积添加剂制造来修复Amit回旋子中使用的触觉阴极的可能性。首先将受损的部分以3D成像,扫描电子显微镜和Vickers显微硬度为特征,以了解服务过程中发生的损伤机制并量化损害的程度。使用高纯度触觉线和粉末原料进行了测试,并确定了使用高纯度触觉的电线和粉末原料。已经证明了激光金属沉积恢复用于Amit Cyclotron的受损阴极的能力。
然而,V x o y阴极的商业应用仍然受到限制,主要是因为该材料是在其充电状态下合成的(即没有互插离子的来源:LI,Na,Zn和Mg)和毒性。为了解决以前的化学插入,已经研究了将离子源插入V x o宿主材料中,包括Li X-,Na X-,Zn X - 和Mg X -V Y O Z。[24–30]插量离子不仅充当层中的支柱,以防止结构变形,而且还增加了层中离子源的量。先前的评论论文全面报道了基于V X O Y的材料的特征,并总结了其作为在LIBS,NIBS,ZIB和MIBS中用作阴极的电化学性能。[12,13,25,26]然而,要详细了解储能机制是很有吸引力的,因为它们在充电和电荷过程中监测实时反应,因此详细了解储能机制是有吸引力的。在这里,“原位”是指“在现场或反应物内部”,而“ Operando”是指“在工作或操作条件下”,但是这些术语通常在文献中互换。更普遍地说,“原位/操作分析”用于描述实时电化学操作下的电化学分析。[31–34]
titre du阶段 /实习标题:通用确定性单离子“植入器”设置,具有纳米准确性简历 /由特定掺杂材料制成的量子量子电路,是用于量子通信和计算的基础。但是,由于非确定性离子源和准确性限制,当前的离子植入技术面临局限性。我们在这里建议为半导体和量子技术中的应用开发高精度,通用的“植入器”设置。为此,我们将利用由原子束的电离产生的每个电子/离子对之间的相关性,以根据电子给出的额外信息积极控制离子传递轨迹,如CS原子[Phys [Phys] [Phys。修订版应用11,064049,2019:https://doi.org/10.1103/physrevapplied.11.064049]。在亚纳米尺度上的受控离子来源的这种开发将打开植入,蚀刻,沉积和成像实验的独特视角,并将允许在半导体领域开发革命性的分析工具。为此,我们将通过使用飞秒脉冲多光子离子化来使原子束系统适应纤维原子束系统,从而产生“冷”离子源以提高准确性。其他离子的使用将使我们能够实现精确的离子轨迹控制和确定性的单离子创建。实习将包括在现有设置上使用CS测试该方法。可能在博士学位中的下一步将包括开发确定性的BI或N来源,以与新的FIB列集成以最终实现纳米尺度植入。