Transpector APX 不仅是目前速度最快的 RGA 工艺监测器,还提供了一系列创新的入口和离子源选项,可根据工艺条件进行选择,从而实现最长的正常运行时间。下一代 Transpector APX 入口系统设计用于承受容易产生颗粒或涂层的工艺化学反应,如 ALD 或 PECVD。这允许进行连续监测,以在所有关键工艺步骤中捕获数据点。此外,还提供简化和 HexBlock 入口选项,INFICON 专有涂层可抵抗腐蚀性气体,这对于腔室清洁端点监测应用至关重要。
液相色谱 - 质谱(LC-MS)在当今设备齐全的分析实验室中迅速成为常规的效果。随着LC-MS的使用增加,具有工具性,化学和数据库方法,旨在提高这种宝贵技术的敏感性,特定性和分析速度。具有增强离子光学和检测器的新离子源,高分辨率LC系统和快速质谱仪已降低了检测的限制,但已提高了用于样品制备,移动相和添加剂的试剂的纯度期望,并提高了标准。一些显着的例子,说明如何影响分析的LC-MS中使用的化学物质的纯度和组成:
氪具有几种有趣的特性,使其在某些技术中很有用。它被用作照明设备中的惰性气体,填充白炽灯、滤光片,作为激光器和其他设备的活性介质。氪可以在微电子材料表面氧化过程中充当离子源。此外,氪还成为制造发光二极管和减少窗户热量损失的基础。在科学研究中,氪是物理和化学实验的介质(例如,在低温装置中)。氪在呼吸治疗的医学研究中用于研究肺功能以及生产气雾剂。氪气在半导体材料生产过程中用作保护气体环境。
当离子源在降低压力下充满气体的电池中的两个电极之间施加电势差时,就会发生光泽放电。在用于元素分析的配置中,样品充当阴极,其表面被撞击气体离子溅射。溅射颗粒(主要是中性原子)在血浆中下游电离。因为溅射和电离的过程是分离的,尤其是在脉冲模式操作中,因此观察到最小的非光谱基质效应。因此,可以建立相对灵敏度因子(RSF),实现定量分析或使用简单的离子束比(IBR)进行半定量分析来实现完美条件。
磷酸铁锂 (LiFePO4) 电池由发电电化学电池组成,为电气设备供电。LiFePO4 电池由阳极、阴极、隔膜、电解质以及正极和负极集电器组成。阳极端子充当锂离子源。电解质通过隔膜将带正电的锂离子从阳极输送到阴极,反之亦然。锂离子的运动在阳极中产生自由电子,因此,电子将通过外部电路流到阴极,即正极,因此,当电负载连接到电池上时,电流将从正极流到负极。电池由同心交替的负极和正极材料层组成,隔膜层位于其间。然后将电解质注入电池中以允许离子传导。
PELIICAEN(纳米级离子注入控制和分析研究平台)装置是一种独特的设备,它拥有所有的原位超高真空设备(聚焦离子束 (FIB) 柱、二次电子显微镜 (SEM)、原子力和扫描隧道显微镜 (AFM/STM)),以及它在材料上的纳米结构性能。该装置最近配备了自己的电子回旋共振离子源、使用气动振动绝缘体的新型位置控制平台和快速脉冲装置。它的性能得到了大幅提升,可以选择多种离子,离子注入深度可调至几百纳米,图像分辨率低至 25 纳米,样品上的离子束尺寸低至 100 纳米。凭借所有这些设备,PELIICAEN 装置在执行和分析离子注入和表面改性方面处于国际前沿。
图 3 收集了两个测试离子源的测量电流 𝐼 sc 和 𝐼 ac 与质量流速 𝑚̇ s 的关系。在隼鸟 2 号源中,屏栅电流对两种推进剂都显示出一个最大值。氪的最大电流 (216 mA) 大于氙气 (171 mA),但达到的最大电流略高,分别为 0.24 (3.8) vs. 0.22 mg/s (2.2 sccm)。超过上述峰值后,𝐼 sc 从“高电流模式”(HCM) 降至低效的“低电流模式”(LCM),如 15–17 中所述,同时反射的微波功率增加。对于氙气,这种转变似乎更为突然。另一方面,氙气和氪气的𝐼ac最小值分别为0.18(1.8)-0.19毫克/秒(1.9 sccm)和0.16(2.5)-0.20毫克/秒(3.3 sccm)。
等离子技术已成为工业应用的一部分,可替代或与标准技术竞争。由于新的等离子源和新技术的出现,等离子技术的潜力正在不断扩大。这为这些技术开辟了未来应用的新领域。成功的应用包括在高温下工作的自适应摩擦学涂层或聚合物基纳米颗粒的表面处理。另一个有趣的领域是混合技术。在这种情况下,等离子技术可以补充或促进已建立方法的应用。本期特刊将包括具有工业用途潜力的基础研究知识以及可应用于现有工业技术的知识。我们将重点关注以下专业主题: - 等离子和离子表面工程 - 与水和冰接触的涂层 - 自适应摩擦学涂层 - 柔性涂层 - 生物医学和生物应用 - 等离子体中的颗粒和粉末 - 等离子处理、等离子清洗 - 等离子体-表面相互作用
Jyväskylä大学(JYFL-ACCLAB)的加速器实验室成立于1992年,已发展成为一个世界有的多用户设施,有四个加速器为大型国家和国际用户提供离子,电子和光子光束。JYFL-ACCLAB的使用者代表了多学科的领域范围,探讨了对核和原子物理学,核天体物理学和基本相互作用的研究,电子和材料对辐射的影响,离子源开发和等离子体物理,纳米科学,材料表征和薄膜研究。该设施还为工业合作伙伴提供了广泛的分析,辐射和专家咨询服务。JYFL-ACCLAB是一家真正的国际用户驱动的研究基础设施,是欧洲领先的离子光束设施之一,并向所有研究人员完全开放。辐射效应设施为欧洲航天局和欧洲卫星和航空航天行业提供服务。ALD Center Finland-原子层沉积和蚀刻的研究基础设施
1 美国国家标准与技术研究所 (NIST),美国马里兰州盖瑟斯堡 20899 2 特拉华大学,美国特拉华州纽瓦克 19716 3 克莱姆森大学,美国南卡罗来纳州克莱姆森 29634 4 马里兰大学,美国马里兰州帕克分校 20742 将离子限制在离子阱中有许多有趣的应用,包括精密光谱学、量子计量学以及强耦合单组分等离子体中的集体行为。在大多数情况下,单电荷离子或几次电离的物质是在离子阱内原位产生的。但是,某些应用需要专用的外部离子源。例如,将离子束注入线性射频 (RF) 阱中,形成以空间电荷为主的非中性等离子体,用于模拟强带电粒子束传播的实验,例如重离子聚变反应堆、散裂中子源和高能物理中的粒子束。强空间电荷效应使高电荷离子 (HCI) 的隔离更加复杂,该效应与电荷状态的平方成正比。在这项工作中,我们报告了在双曲线 RF 阱中捕获 ~500 Ne 10+ 离子。高电荷离子从 NIST 的电子束离子源/阱 (EBIS/T) 中提取,随后由 7 米长的光束线引导至离子阱装置;嵌套在静电光束线光学器件中的电荷质量分析仪用于选择要在 RF 阱中重新捕获的单个电荷状态 (Ne 10+)。我们讨论了实验优化,并将结果与计算机模拟进行了比较。实验捕获效率达到了 ~20%,在双曲线 RF 阱中捕获了 ~500 个 Ne 10+ 离子,与单元 Penning 阱中达到的捕获效率相当 [1]。RF 阱中可用的更大光学通道有利于改进光谱实验。由于 RF 驱动的微运动加热并且没有任何冷却机制,观察到的存储在 RF 阱中的 Ne 10+ 离子的存储寿命为 69 毫秒,短于单元 Penning 阱中相应的存储寿命。尽管如此,这对于各种光谱实验都很有用,包括许多电荷状态的原子状态寿命测量。探索了增加捕获离子数量和存储寿命的可能改进方法。参考文献