对于这个项目,这些挑战本来可以在各种蚀刻化学中遇到。当前用于等离子蚀刻铝的气体为BC13,SICL4,CC14,CL2,BBR3,HBR和BR2 [1,4]。这些气体都是剧毒或致癌的。四胆碱硅不被认为是致癌物,而是毒性。这是选择SICL4作为该项目的蚀刻气体的主要原因之一。SICL4的另一个优点是,它增加了铝对光抗抗命天的选择性。使用SICL4作为唯一的蚀刻气体时,血浆中的过量电弧可能以相对较低的功率发生(<100瓦)发生,因此需要稀释剂来防止这种弧形。这样的稀释剂不仅可以减少等离子体中的弧菌,而且还提高了光膜天固醇的选择性是氦气[2]。使用SICL4和高功率(300瓦)的SICL4和Argon的混合物来完成氧化铝的突破。氩气,是因为其离子很重,因此在溅射过程中对表面造成了更大的损害。SIC14通过减少血浆气氛中的水分来充当水清除剂,从而防止了氧化铝的进一步生长[1]。
简介 在过去的三十年中,技术和电子组装技术发生了巨大的变化。从二十世纪五十年代到二十世纪九十年代,低可靠性和高可靠性硬件的电子组装使用非常相似的材料和工艺:含卤化物活化剂的松香基助焊剂与锡铅焊料结合使用,用于波峰焊、回流焊或手工焊接工艺,随后用溶剂清洗(Freon™ 或 1,1,1-三氯乙烷)。这种方法在高可靠性技术上运行了几十年,但 1987 年《清洁空气法》禁止使用大多数溶剂清洁剂。这对行业造成了巨大的冲击,使技术驱动因素(大批量制造商)得以创造新方法。最初推出的无松香免清洗助焊剂以及不含松香的水溶性助焊剂与历史上可靠的锡铅系统一起使用,回流温度约为 184 °C,效果良好。随后发生了更大的变化:通过从焊料系统中去除铅,回流温度可以超过 230°C。与热应力增加相结合,绝缘松香的缺乏为性能下降提供了大量机会。在几十年的松香助焊剂/溶剂清洁过程中,因污染或腐蚀问题而导致的大规模召回很少见。在 20 世纪 80 年代和 90 年代初期,高
*48V范围扩展名,仅在选定区域可用。受特定应用,使用和要求的约束。最终电池配置为符合设备制造商规格。有关设备特定电池重量或其他要求的更多信息,请咨询您的Enersys®代表。
Physical state : Solid Appearance : No data available Colour : Metallic Black Odour : Odourless Odour threshold : No data available pH : No data available pH solution : No data available Relative evaporation rate (butylacetate=1) : No data available Melting point / Freezing point : Freezing point: Not applicable Boiling point : No data available Flash point : No data available Auto-ignition temperature : No data available Flammability : No data available Vapour pressure : No data available Relative密度:无数据可用密度:无数据可溶解度:无数据可用日志功能:无数据可用的粘度,运动学:不适用爆炸性属性:无数据可用爆炸性限制:不适用的最小点火能量:无数据可用的脂肪溶解度:无数据可用数据可用数据可用
固态钠离子电池 (SSSB) 的发展在很大程度上取决于超离子 Na + 导体 (SSC) 的开发,该导体具有高导电性、(电)化学稳定性和可变形性。异质结构的构建提供了一种有前途的方法,可以以不同于传统结构优化的方式全面增强这些特性。在这里,这项工作利用高配位和低配位卤化物骨架之间的结构差异来开发一类新型卤化物异质结构电解质 (HSE)。结合 UCl 3 型高配位框架和非晶低配位相的卤化物 HSE 实现了迄今为止卤化物 SSC 中最高的 Na + 电导率(室温下 2.7 mS cm − 1,RT)。通过辨别晶体本体、非晶区域和界面的各自贡献,这项工作揭示了卤化物 HSE 内的协同离子传导,并对非晶化效应提供了全面的解释。更重要的是,HSEs优异的可变形性、高压稳定性和可扩展性使得SSSB能够有效地集成。使用未涂覆的Na 0.85 Mn 0.5 Ni 0.4 Fe 0.1 O 2和HSEs的冷压正极电极复合材料,SSSBs表现出稳定的循环性能,在0.2 C下经过100次循环后容量保持率为91.0%。
由于现代社会人口爆炸式增长和工业发展迅猛,能源需求不断增加,环境问题日益严重,因此进一步发展高效的能源转换技术,从太阳能、生物质能、风能和潮汐能中获取可再生能源已引起人们的广泛关注。1 – 3 储能系统 (EES) 是重要的推动因素之一。储能系统主要包括两大类,前者通过电极材料中的氧化还原反应将电能以化学能形式储存,后者利用电极材料表面离子的快速物理吸附。4 – 6 电荷存储机制的差异使电池具有高能量密度,而超级电容器具有高功率密度。4,7,8 例如,
柔韧性具有应变梯度诱导的机械电性转换,使用不受其晶体对称性限制的材料,但是最新的外部电代材料表现出非常小的外部电代电相系数,并且太脆,无法承受大的变形。在这里,受到生物体的离子极化的启发,本文报告了软性水凝胶的巨大离子旋转电离,其中离子极化归因于弯曲变形下的阳离子和阴离子的不同转移速率。发现频率被水凝胶中的阴离子 - 阳离子对和聚合物网络的类型很容易调节。具有1 M NaCl的聚丙烯酰胺水凝胶可实现≈1160μCm-1的创纪录的外部系数,甚至可以通过与离子对和额外的额外的聚卵链协同作用。此外,由于其固有的低模量和高弹性,水凝胶作为纤维外材料可以承受更大的弯曲变形,从而获得更高的极化电荷。然后证明了一个软弹性传感器,以通过机器人的手识别物体识别。发现大大拓宽了外部电源,以使柔软,仿生和生物相容性材料和应用。
nist.gov › general › pdf PDF 作者:JC Bergquist · 2002 · 被引用次数:2 — 作者:JC Bergquist · 2002 被引用次数:2 量子力学与量子计量学。17. “量子计算、捕获离子的光谱和薛定谔猫”,D.J. Wineland,C. Monroe,...
可持续的储能解决方案所需的材料比锂在环境中需要更丰富,更重要的材料。因此,LI后电池(例如na-ion电池)具有重要意义。此外,固态电池(SSB)的开发可以帮助克服含有液体电解质的常规电池的主要问题,即(i)安全问题 - 由于泄漏而引起的爆炸或火灾,(ii)低能密度 - 不可能将li或na用作阳极。近年来,AALEN应用科学大学的IMFAA建立了一个配备出色的电池实验室,可以在其中分析和开发常规的LIB和SSB材料。在以下主题的研究项目中是感兴趣的;
玻璃离子牙科水泥 (GIC) 是一种具有抗龋活性的美观直接修复材料。玻璃离子由铝硅酸盐玻璃粉和聚丙烯酸液体组成。在修复材料中,GIC 的显著特点是它们能够无需任何预处理即可与湿润的牙齿结构粘合,并提供长时间的氟化物释放,从而防止随后的蛀牙 (龋齿)。这些特性,加上材料可接受的美观性和生物相容性,使它们在医疗和牙科应用中广受欢迎和理想。然而,GIC 表现出较差的机械性能和湿度敏感性。为了提高其机械和物理性能,GIC 粉末经过了大量的配制和改性。本文概述了用于增强 GIC 机械和物理性能的各种填料。关键词:牙科玻璃离子水泥、复合体、树脂改性 GIC、Giomer、纳米粒子