10.1 简介 10-2 10.2 系统工程及其武器开发方法 10-3 10.2.1 简介 10-3 10.2.2 系统工程和弹药寿命管理 10-3 10.2.3 系统工程、故障模式和风险管理 10-4 10.2.4 武器的系统工程和螺旋式发展 10-12 10.3 智能全寿命管理 10-14 10.3.1 英国研究 10-14 10.3.2 全球研究 10-17 10.4 含能材料分析 10-21 10.4.1 加速老化和数据分析 10-21 10.4.2 寿命评估测试:考虑因素和进展 10-23 10.4.3 单轴、双轴和三轴机械测试 10-26 10.4.4裂纹扩展失效 10-29 10.4.5 本构材料模型数据 10-30 10.4.6 粘结试验 10-30 10.4.7 无损评估 10-31 10.5 建模 10-32 10.5.1 使用寿命预测建模 10-34 10.5.2 从头算或基于物理的建模 10-38 10.5.3 配套资产和套料 10-39 10.6 数字线程和孪生 10-42 10.7 结论 10-45 致谢 10-45 词汇表 10-46 参考文献 10-47
来源URL:https://www.adacap.com/careers/career-search/job/details/req-10037320-scientist-analytical-scient--science-tech
2023年科学技术投资策略的组织方式与往年不同。反映了实验室主任金·布迪尔(Kim Budil)的指导以及她在过去一年的领导团队的战略规划工作,概述了更新的实验室任务和远景描述,建立新的任务焦点领域(MFA)以及使用目标和关键结果(OKRS)使用更正式的目标设定方法(OKR)。它广泛描述了投资决策的类型和性质以及由于这些决定而在三到五年内的期望结果。总体而言,该战略从任务的角度描述了科学和技术的挑战,并展望着突破新科学,技术和创新的界限。和与上一年的文件一致的,描述了今年LDRD计划投资的优先事项,以支持24财年的LDRD研究建议的呼吁。
摘要 沸腾传热是液体的显热传递和汽化引起的潜热传递的结合。为了研究沸腾中的显热传递,液-气多相流中液体的温度测量必须发挥重要作用。尽管已经提出了几种用于沸腾现象温度测量的光学方法,但由于许多沸腾气泡对照明和观察的干扰,直接测量相对较高热流密度下的沸腾温度场具有挑战性。本研究提出了一种新颖的温度测量方法,利用密闭空间、两块透明板之间的夹层空间和双色激光诱导荧光温度测量来测量多个沸腾气泡周围的液体温度分布。密闭空间限制了流体运动,使得可以照亮和观察几乎整个感兴趣的区域。两种荧光染料的强度比显示了局部和时间温度,而无需任何物理探针的侵入。我们成功地观察到了过热液体从传热表面的清除,证明了该方法的实用性。利用该方法从实验数据中提取出的多个位置的温度时间变化与沸腾气泡的行为相一致,并对该方法尚待解决的问题进行了讨论。
入学要求 工程学或自然科学学士学位(或更高)(例如航空航天、机械、电气、通信工程、信息学、大地测量学、数学、物理学) 非母语人士的英语语言证书 个人简历 动机信 自行撰写的科学论文 地点 课程在慕尼黑市中心校区和加兴校区授课。 每学期费用 无学费。详细信息:www.tum.de/en/studies/fees-and-financial-aid/