人类表现出非常出色的技能,可以在不同形状,姿势和外观的对象中传递操纵能力,这是一种植根于他们对不同实例之间语义对应关系的理解的能力。为了为机器人提供类似的高级理解,我们提出了Sparsedff,这是一种新颖的DFF,用于3D场景,利用大型2D视觉模型从稀疏的RGBD图像中提取语义特征,该域与固定设置的许多任务相关,尽管它与许多任务相关。sparsedff生成视图一致的3D DFF s,通过将图像特征映射到3D点云,从而有效地对灵活性操作进行了有效的灵感操作学习。Sparsedff的中心是一个特征改进网络,通过视图和特征连续性的点式缩写机制之间的对比损失进行了优化。这有助于最小化特征差异W.R.T.最终效应参数,桥接演示和目标操作。在现实世界中用灵巧的手验证,Sparsedff证明有效地有效地操纵刚性和可变形的对象,表明对象和场景变化之间具有显着的概括能力。
• 可选择屏蔽测试主数据库中的敏感数据 • 使用一条命令从此处创建节省空间的测试/开发数据库,适用于 PDB • 快照上提供 Exadata Smart 功能(查询卸载、存储索引、智能日志、智能闪存缓存、HCC 等) • 挑战 — 刷新测试主数据库会使现有快照无效;必须创建新的完整测试主数据库才能创建新的刷新的 Exadata 快照
摘要 — 从梯度下降中得出的在线突触可塑性规则在广泛的实际任务中实现了高精度。然而,它们的软件实现通常需要繁琐的手工梯度或使用梯度反向传播,这牺牲了规则的在线能力。在这项工作中,我们提出了一种自定义自动微分 (AD) 管道,用于稀疏和在线实现基于梯度的突触可塑性规则,该管道可推广到任意神经元模型。我们的工作结合了前向 AD 的反向传播类型方法的编程简易性,同时节省了内存。为了实现这一点,我们利用在线突触可塑性的优势计算和内存扩展,提供一种固有稀疏的 AD 实现,其中如果张量是对角的,则昂贵的张量收缩被简单的元素乘法取代。基于梯度的突触可塑性规则(如资格传播 (e-prop))恰好具有这种特性,因此从这一特性中获益匪浅。我们在合成任务中展示了梯度反向传播与梯度对齐,其中 e-prop 梯度是精确的,以及音频语音分类基准。我们展示了内存利用率如何随网络规模而变化,而不依赖于序列长度,这与前向 AD 方法的预期一致。索引术语 — 算法、神经形态计算、资格传播、自动微分
神经网络在各个领域都取得了令人瞩目的成功,这引出了一个问题:最佳人工智能系统和人类智能的有效性背后隐藏着哪些基本原则。这种观点认为,组合稀疏性,即组合函数具有“少数”组成函数的特性,每个函数仅依赖于一小部分输入,是成功学习架构背后的关键原则。令人惊讶的是,所有高效图灵可计算的函数都具有组合稀疏表示。此外,同样稀疏的深度网络可以利用这一一般特性来避免“维数灾难”。这个框架对机器学习在数学中可能发挥的作用提出了有趣的启示。
量子计算机的一个候选应用是模拟量子系统的低温特性。对于这项任务,有一种经过深入研究的量子算法,它对与低能态有不可忽略重叠的初始试验状态进行量子相位估计。然而,众所周知,很难从理论上保证这种试验状态能够有效地准备。此外,目前可用的启发式建议,例如绝热状态准备,在实际情况中似乎不够充分。本文表明,对于大多数随机稀疏汉密尔顿量,最大混合状态是一个足够好的试验状态,相位估计可以有效地准备能量任意接近基能的状态。此外,任何低能状态都必须具有不可忽略的量子电路复杂性,这表明低能状态在经典上是非平凡的,相位估计是准备此类状态的最佳方法(最多多项式因子)。这些陈述适用于两种随机汉密尔顿量模型:(i) 随机带符号泡利弦的总和和 (ii) 随机带符号 d -稀疏汉密尔顿量。主要技术论据基于非渐近随机矩阵理论中的一些新结果。特别是,需要对谱密度进行精细的集中界定,以获得这些随机汉密尔顿量的复杂性保证。
在本文中,我们评估了大流行的影响以及随之而来的中断对全球价值链(GVC)对出口企业的影响。为此,我们在2020年1月至2021年12月期间从事国际贸易的法国公司的宇宙在公司企业 - 合作社国家/地区使用富裕的数据集。我们发现,就出口销售和出口市场的生存概率而言,参与全球价值链的脆弱性增加了公司对大流行冲击的脆弱性,尤其是当供应瓶颈更加重要时。的公司在价值链中相对下游的公司受到供应中断的严重影响。同时,我们的结果表明,出口公司从从不同国家采购其核心投入中受益,这支持了以下假设:全球价值链中的多元化促进了供应链的弹性。
摘要 - 诸如Vision Transformer和Bert之类的大型模型,由于其表现性能而引起了极大的关注。但是,它们广泛的计算要求导致了大量的功率和硬件资源消耗。脑启发的计算已成为低功率硬件实现的一种有希望的方法。在本文中,我们提出了用于尖峰驱动变压器的有效稀疏硬件加速器。我们首先设计了一种新颖的编码方法,该方法编码有效激活的位置信息并跳过非尖峰值。此方法使我们能够使用编码的尖峰来执行线性,最大化和尖峰驱动的自我注意力的计算。与主要关注基于卷积的尖峰计算的常规SNN加速器的单个尖峰输入设计相比,用于尖峰驱动的自我注意的专门模块在处理双尖峰输入的能力方面是独一无二的。通过专门利用激活的尖峰,我们的设计充分利用了尖峰驱动的变压器的稀疏性,从而减少了冗余操作,降低了功率组合并最大程度地减少了计算潜伏期。实验结果表明,与现有的SNNS加速器相比,我们的设计分别在吞吐量和能源效率方面可提高13.24×和1.33倍。索引术语 - 弹性神经元网络(SNNS),硬件加速器,Spike-drive Transformer。
摘要 量子范式呈现出一种称为退化的现象,这种现象可以潜在地提高量子纠错码的性能。然而,在评估稀疏量子码的性能时,这种机制的影响有时会被忽略,逻辑错误率并不总是能被正确报告。在本文中,我们讨论了以前存在的计算逻辑错误率的方法,并提出了一种受经典编码策略启发的基于陪集的有效方法来估计退化错误并将其与逻辑错误区分开来。此外,我们表明,所提出的方法为 Calderbank-Shor-Steane 码系列提供了计算优势。我们使用这种方法证明,退化错误在特定的稀疏量子码系列中很常见,这强调了准确报告其性能的重要性。我们的结果还表明,文献中提出的改进解码策略是提高稀疏量子码性能的重要工具。
谱超图稀疏化是将众所周知的谱图稀疏化扩展到超图的一种尝试,在过去几年中得到了广泛的研究。对于无向超图,Kapralov、Krauthgamer、Tardos 和 Yoshida (2022) 证明了最佳 O ∗ ( n ) 大小的 ε -谱稀疏器,其中 n 是顶点数,O ∗ 抑制了 ε − 1 和 log n 因子。但对于有向超图,最佳稀疏器大小尚不清楚。我们的主要贡献是第一个为加权有向超图构造 O ∗ ( n 2 ) 大小的 ε -谱稀疏器的算法。我们的结果在 ε − 1 和 log n 因子范围内是最优的,因为即使对于有向图也存在 Ω(n2) 的下限。我们还展示了一般有向超图的 Ω(n2/ε) 的第一个非平凡下界。我们算法的基本思想借鉴了 Koutis 和 Xu (2016) 提出的基于 spanner 的普通图稀疏化。他们的迭代采样方法确实有助于在各种情况下设计稀疏化算法。为了证明这一点,我们还提出了一种类似的无向超图迭代采样算法,该算法实现了最佳大小界限之一,具有并行实现,并且可以转换为容错算法。
大脑图对大脑区域之间的结构和功能关系进行了建模,在涉及图分类的神经科学和临床应用中至关重要。然而,密集的大脑图构成了计算挑战,包括高运行时间和记忆使用和有限的解释性。在本文中,我们研究了图神经网络(GNN)中的有效设计,以消除嘈杂的边缘来稀疏脑图。虽然先前的作品根据解释性或任务 - 涉及属性去除嘈杂的边缘,但不能保证它们在通过频繁图提高性能方面的有效性。此外,现有方法通常忽略了多个图形的集体边缘去除。为了解决这些问题,我们引入了一个迭代框架来分析不同的稀疏模型。我们的发现是作为下降的:(i)优先考虑可解释性的方法可能不适合图形稀疏性,因为它们可以在图形分类任务中降低GNNS的性能; (ii)与GNN训练同时学习边缘分类比训练后更有益; (iii)跨图的共享边缘选择优于每个图的单独选择; (iv)与任务相关的梯度信息有助于边缘选择。基于这些见解,我们提出了一个新的模型,可解释的图形泄漏(IGS),该模型可增强图形分类性能高达5.1%,而边缘减少了55.0%。IG识别的保留边缘提供了神经科学解释,并得到了公认的文献的支持。