该团队已经开发出一种步行控制方案,并在之前的人形机器人 HRP-2 上成功测试,验证了强大的步行模式生成器,该生成器速度足够快,可以进行实时计算,并能够自动定位其脚步(应用示例见 [Stasse et al., 2009] 和 [Ramirez-Alpizar et al., 2016])。然而,在新的 Pyr`ene 机器人上,由于比 HRP-2 和其系列的第一个原型(Talos 模型)更重,臀部灵活性等各种技术问题使其在当前的步行模式和控制方案下行走不稳定。因此,已经实施了稳定器并进行了部分测试。实习旨在通过研究稳定器和步行模式生成器来改进控制方案的当前状态,包括实时验证控制以允许机器人进行远程操作。
魔法状态蒸馏(或非稳定状态操纵)是实现可扩展、容错和通用量子计算的主要方法中的关键组成部分。与非稳定状态操纵相关的是非稳定状态的资源理论,该理论的目标之一是表征和量化量子状态的非稳定性。在本文中,我们引入了 thauma 测度系列来量化量子状态中的非稳定性量,并利用该测度系列来解决非稳定状态资源理论中的几个悬而未决的问题。作为第一个应用,我们建立了假设检验 thauma 作为一次性可蒸馏非稳定度的有效可计算基准,这反过来又导致了非稳定度蒸馏速率以及魔法状态蒸馏开销的各种界限。然后,我们证明最大 thauma 可用作一种有效的可计算工具,用于对魔法状态蒸馏的效率进行基准测试,并且它可以胜过以前基于 mana 的方法。最后,我们使用最小 thauma 来约束文献中称为“魔法正则化相对熵”的量。作为此约束的结果,我们发现两类具有最大 mana(先前建立的非稳定器度量)的状态不能以等于 1 的速率在渐近状态下相互转换。这一结果解决了非稳定器状态资源理论中的一个基本问题,并揭示了非稳定器状态资源理论与其他资源理论(如纠缠和相干性)之间的差异。
3。量子傅里叶变换,Grover的算法,相位估计,量子分解,Shor算法,量子搜索算法,量子误差 - 校正,量子误差校正代码,稳定器代码,易于故障的量子计算。
量子模拟的复杂性并非仅仅源于纠缠。量子态复杂性的关键方面与非稳定器或魔法有关 [1]。Gottesman-Knill 定理 [2] 表明,即使是一些高度纠缠的状态也可以被有效地模拟。因此,魔法是一种资源,代表准备量子态所需的非 Clifford 操作(例如 T 门)的数量。我们使用稳定器 R´enyi 熵 [3] 证明,与具有零动量的状态相比,具有非零晶格动量的退化量子多体基态允许魔法的增量 [4]。我们通过分析量化了这一增量,并展示了有限动量不仅增加了长程纠缠 [5],还导致魔法的变化。此外,我们还提供了 W 状态及其广义(量子信息界经常讨论)与受挫自旋链基态之间的联系。
STC 微型断路器 MCB HS 编码 853620 接触器 HS 编码 853649 塑壳断路器 MCCB HS 编码 853620 电压稳定器 HS 编码 850440 消费单元 HSCO
这是一篇说明性文章,旨在向读者介绍量子纠错的底层数学和几何学。存储在量子粒子上的信息会受到环境噪声和干扰的影响。量子纠错码可以消除这些影响,从而成功恢复原始量子信息。我们简要描述了理解量子纠错工作原理所需的量子力学背景。我们继续构建量子码:首先是量子比特稳定器码,然后是量子比特非稳定器码,最后是具有更高局部维度的码。我们将深入研究这些代码的几何学。这使我们能够有效地推导出代码的参数,推导出具有相同参数的代码之间的不等价性,并提供了一个推导出某些参数可行性的有用工具。我们还包括关于量子最大距离可分离码和量子 MacWilliams 恒等式的部分。
在各种量子纠错码 (QECC) 中,非稳定器码具有丰富的特性,具有理论和实际意义。然而,解码非稳定器码是一项非常艰巨的任务。在本文中,我们表明,Calderbank-Shor-Steane (CSS) 码的解码电路可以直接扩展以处理一般的 QECC。扩展的关键在于使用与要解码的 QECC 相关的一对经典量子 (CQ) 码。所提出的解码电路的解码误差取决于 CQ 码的经典解码误差及其互补程度。我们在黑洞信息悖论的玩具模型中展示了解码电路的强大功能,与之前的结果相比,解码误差有所改善。此外,我们揭示了黑洞动力学可能以最佳方式编码量子信息,但对经典信息的编码效果很差。
波音公司已选择 UTC 航空航天系统公司为其新型波音 777X 大型双引擎喷气式飞机提供另外三个系统。这些系统是 UTC 航空航天系统公司在 2015 年获得的飞机众多系统的补充。UTC 航空航天系统公司现在还将提供水平稳定器配平执行器,该执行器可移动水平稳定器,以在飞行过程中配平和稳定飞机的俯仰轴。这个飞行关键部件是 777X 飞行控制系统的一部分,由 UTC 航空航天系统的 Ratier- Figeac 子公司开发,是一种基于实地验证技术的先进设计。此外,UTC 航空航天系统公司还被选中为 777X 提供地面机动摄像系统 (GMCS) 和近距离传感器数据集中器 (PSDC)。GMCS 通过为飞行员提供前起落架、主起落架和翼尖区域的视频和摄像头视图来增强态势感知能力
波音公司已选择 UTC 航空航天系统公司为其新型波音 777X 大型双引擎喷气式飞机提供另外三个系统。这些系统是 UTC 航空航天系统公司在 2015 年获得的飞机众多系统的补充。UTC 航空航天系统公司现在还将提供水平稳定器配平执行器,该执行器可移动水平稳定器,以在飞行过程中配平和稳定飞机的俯仰轴。这个飞行关键部件是 777X 飞行控制系统的一部分,由 UTC 航空航天系统的 Ratier- Figeac 子公司开发,是一种基于实地验证技术的先进设计。此外,UTC 航空航天系统公司还被选中为 777X 提供地面机动摄像系统 (GMCS) 和近距离传感器数据集中器 (PSDC)。GMCS 通过为飞行员提供前起落架、主起落架和翼尖区域的视频和摄像头视图来增强态势感知能力
摘要。这是一篇旨在向读者介绍量子误差校正的数学和几何形状的说明性文章。存储在量子粒子上的信息受环境的噪声和干扰。quantum-tum误差校正代码允许否定这些效果,以便成功恢复原始量子信息。我们训练会描述必要的量子机械背景,以便能够理解量子误差校正的工作原理。我们继续构建量子代码:第一个Qubit稳定器代码,然后是Qubit非稳定器代码,并在最终代码上具有较高的局部尺寸。我们将深入研究这些代码的几何形状。这允许人们推导代码效率的参数,推断具有相同参数的代码之间的不等性,并为推论某些参数的可行性提供了有用的工具。我们还包括量子最大距离可分离代码和量子MacWilliams身份的部分。