3D 生物打印在过去几年中发展迅猛,能够制造简单和复杂的组织模型。国际航天机构已经认识到这些技术为太空基础研究制造细胞和组织模型提供了独特的机会,特别是研究微重力和宇宙辐射对不同类型人体组织的影响。此外,生物打印能够生产临床适用的组织移植物,因此其在太空中的实施可以支持宇航员在未来长期和远距离太空任务中的自主医疗治疗选择。本文讨论了在太空条件下(主要是在微重力条件下)操作不同类型的生物打印机的机会和挑战。虽然一些工艺步骤(其中大部分涉及液体处理)在微重力条件下具有挑战性,但这种环境可以帮助克服低粘度生物墨水中细胞沉降等问题。希望该出版物能够激励更多的研究人员参与该主题,并在不久的将来在国际空间站(ISS)提供公开的生物打印机会。
虽然太空中的信号仍然可用且可接收(这一点没有改变),但该信号不再可用于某些功能。由于英国退出 EGNOS 计划,ESSP(欧洲卫星服务提供商)终止了与机场的 EGNOS 工作协议。航空电子设备可以继续接收太空中的信号
第一章 - 民用无人机的增长对内部安全构成威胁吗?第 1 章 - 无人机在法国天空中的飞行 第 1 节 - 具有强大经济潜力的民用无人机市场 第 2 节 - 法律框架的调整 第 2 章 - 对国家安全和安全的可能损害来源第 1 节 - 风险和威胁 第 2 节 - 行动响应 第 3 节 - 法律和司法响应 第 II 部分 - 无人机:部队的盟友内部安全 第 1 章 - 法国天空中的军用无人机:前景与使用限制 第 1 节 - 优点和前景 第 2 节 - 使用限制
为具体性,该报告评估了正在考虑的提案之一(由欧盟和日本提出),该提案将引入海上燃料的温室气体强度标准。根据该标准,船舶运营商消耗的每单位燃料的平均生命周期排放量必须降至预定的阈值以下,随着时间的流逝,这将变得越来越严格。这种性质的政策旨在支持利益相关者的长期计划并促进对清洁燃料技术的投资;已经实施了排放标准,以涵盖德国,瑞典和加拿大国家以及美国许多州的国家一级的公路运输。在欧盟,Fueleu海事法规对运输运营商的排放强度标准施加了往返欧盟港口的航行。
太空中的宿主-寄生虫相互作用 随着人类逐渐成为太空航行物种,了解微重力和辐射如何影响宿主-病原体相互作用对于长期探索至关重要。虽然太空飞行对包括人类在内的宿主免疫系统的影响已得到充分研究,但人们对其如何影响伴随它们的病原体和寄生虫知之甚少。这项研究使用果蝇(Drosophila)及其天然寄生蜂来探索太空中的这些相互作用,结果发现,虽然蜂寄生虫发育正常并保持其毒性,但宿主果蝇经历了显著变化。无肿瘤果蝇对太空条件更敏感,必需基因受到抑制,而易患肿瘤的果蝇则表现出肿瘤负担增加。太空飞行还影响了与细胞外基质和炎症相关的基因,其中许多基因与人类疾病有关。此外,具有独特特征的突变蜂出现,为研究提供了新的机遇。这些发现强调需要进一步研究太空中的宿主-病原体动态,以保障宇航员的健康并了解长期的生物学影响。
太空中的生物反应器可应用于从基础科学到微生物工厂的各个领域。在微重力环境下监测生物反应器在流体、通气、传感器尺寸、样品量以及培养基和培养物的扰动方面都存在挑战。我们介绍了一个小型生物反应器开发案例研究,以及一种监测酵母培养物溶解氧、pH 值和生物量的无创方法。针对系统容量 60 毫升和 10.5 毫升,测试了两种不同的生物反应器配置。对于这两种配置,光学传感器阵列 PreSens SFR vario 都会自动收集数据。使用直径为 7 毫米、固定在采样室底部的化学掺杂点监测培养物中的氧气和 pH 值。当点分别与氧分子和氢离子反应时,会发出 DO 和 pH 的荧光信号。使用以 605 nm 为中心的光反射率来感测生物量。光学阵列有三个光检测器,每个变量一个,它们返回的信号经过预校准和后校准。对于需要氧气和呼吸二氧化碳的异养培养,与光学阵列同轴的中空纤维过滤器可给细胞供氧并去除二氧化碳。这提供了足以维持稳定状态条件下有氧呼吸的氧气水平。比较并讨论了两个生物反应器中酵母代谢的时间序列。生物反应器配置可以很容易地修改为自养培养,从而增强二氧化碳并去除氧气,这是光合藻类培养所必需的。