3.10 孔洞。这种类型的孔洞,通常是圆形或椭圆形,也称为气孔、针孔和气孔。空洞的形式比较复杂,可能出现在铸件表面,可能是由于内部金属接触湿砂、湿冷物、干燥不充分的熔渣等时产生的蒸汽引起的。孔隙也可能是由于凝固过程中气体的释放造成的。如果空洞很小且分布很广,它们通常是无害的,但如果相对较大且出现在封闭区域,则应进行充分评估。GSS 孔洞可能非常危险,因为它会直接进入铸件的厚表面膜下,而这些铸件需要进行精确的表面处理,并且没有足够的清理材料。
J 化学镀镍和浸金镀层厚度<118微英寸(Ni)和2微英寸 IPC 6012B 3级/AK 盲孔镀层厚度小于0.8mil IPC 6012B 3级/AL 树脂凹陷大于3mil IPC 6012B 3级/AM 实心铜微孔空洞超过33% 8252313C N 层压板分层 IPC 6012B 3级/AO 层压板裂纹 IPC 6012C 3级/AP 凹蚀小于0.2mil IPC 6012B 3级/AQ 浸金镀层厚度超过6mil IPC 6012C 3级/AR 铜镀层厚度小于1.0mil IPC 6012B 3级/AS 层压板裂纹大于3.0mil IPC 6012B 3级3/AT 介电厚度最小小于 3.0 mil IPC 6012B 3 级/AU 层压板空洞大于 3.0 mil IPC 6012B 3 级/A
摘要:研究了ZnO纳米粒子增强的Sn99Ag0.3Cu0.7(SACX0307)焊料合金的性能。ZnO的原始粒径为50、100和200nm。它们以1.0wt%的比例添加到焊膏中。研究了复合焊料合金/接头的润湿性、空洞形成、机械强度和热电参数。此外,还使用扫描电子和离子显微镜进行了微观结构评估。ZnO纳米粒子降低了复合焊料合金的润湿性,从而增加了空洞形成。尽管如此,复合焊料合金的剪切强度和热电参数与SACX0307参考相同。这可以通过ZnO陶瓷对Sn晶粒以及Ag 3 Sn和Cu 6 Sn 5金属间化合物晶粒的细化作用来解释。这可以弥补较低润湿性的不利影响。在改善润湿性并使用更多活性助焊剂后,ZnO 复合焊料合金有望用于高功率应用。
为了通过最大限度地减少内部缺陷来帮助保持 PCB 性能,可以使用横截面分析来调查 PCB 板和组件的内部结构,无论是用于质量控制、故障分析还是研发。可以使用光学显微镜检查板和组件的各个层是否有裂纹、空洞和其他缺陷。如果需要成分数据,则可以将显微镜与光谱学结合起来。
摘要 在高温和大电流条件下测试了晶圆级芯片规模封装 (WLCSP) 组件。在焊料/凸块下金属化 (UBM) 界面处观察到电迁移损坏以及加速扩散和金属间化合物生长。最终电气故障通常是由于 UBM 附近的再分布线 (RDL) 中产生空隙而发生的。温度升高、电流密度增加和 RDL 走线宽度减小会导致故障率增加。Ni UBM 焊盘和 Cu 柱结构的性能均优于 Cu UBM 焊盘。根据实验数据和其他已发表数据开发了基于 Black 方程的故障模型。然后使用该模型根据代表性现场使用条件制定加速测试和鉴定测试的推荐指南。关键词:WLCSP、电迁移。引言由于 WLCSP 外形小巧,已成为便携式产品应用中使用的 RF 降压转换器、相机闪光灯驱动器、背光驱动器和模拟开关等设备的流行封装。这些器件需要通过 BGA 焊点传输高达 2A 或更高的电流。由于电迁移导致的现场故障是限制给定器件最大额定电流的一个潜在因素。倒装芯片和 WLCSP 焊点中的电迁移故障是由于高电流密度驱动的扩散和金属间化合物反应在高温下加速而发生的 [1-34]。这些影响会产生空洞,这些空洞会随着时间的推移而打开和增长。随着空洞尺寸的增加,通过焊点的电阻会增加,最终出现开路。在大多数电迁移研究中,使用电流密度和温度的测试矩阵来比较设计或材料变量。测试通常会持续到给定支路中至少一半的单元发生故障,以便数据可以拟合对数正态分布或威布尔分布。一个典型目标是确定故障预测模型的常数,例如 Black 方程 [27]。
3.2.1 方法论 ................................................................................................ 94 3.2.2 实验细节 ................................................................................................ 95 3.2.3 测试载体描述 ........................................................................................ 96 3.2.4 测试载体 1:回流曲线验证的影响 ........................................................ 96 3.2.5 测试载体 2:应变率验证的影响 ............................................................. 98 3.2.6 测试载体 3:CSH 验证的影响 ............................................................. 101 3.2.7 测试载体 4:空洞验证的影响 ............................................................. 104 3.2.8 测试载体 5:ATC 对焊点长期可靠性的影响 ............................................. 106
关于使用 1 g 物理模型解决地面运动和土体结构相互作用问题 Marwan Al Heib 1,*、Fabrice Emeriault 2,3、Huu-Luyen Nghiem 1,2 1 INERIS,Alata 技术公园,Verneuil-En-Halatte,F-60550,法国 2 Université Grenoble Alpes,3SR,Grenoble,F-38000,法国 3 CNRS,3SR,Grenoble,F-38000,法国 摘要:本文重点关注物理建模在地面运动(由地下空洞塌陷或采矿/隧道引起)和相关的土体结构相互作用问题中的应用。本文首先概述了使用 1 g 物理模型解决与垂直地面运动有关的岩土问题和土体结构相互作用。然后说明了 1 g 物理建模应用,研究了由于下沉和空洞塌陷导致的砌体结构损坏的发展。利用三维图像相关技术,介绍了一个带有 6 m3 容器和 15 个电动千斤顶的大型 1g 物理模型。从裂缝密度和损伤程度的角度分析了结构位置对沉降槽的影响。所得结果可以改进砌体结构损伤评估的方法和实践。然而,理想的物理模型很难实现。因此,未来物理模型(模拟材料和仪器)的改进可以为 1g 物理模型在岩土和土结构应用和研究项目中的应用提供新的机会。关键词:沉降;物理建模;岩土问题;土-结构相互作用 1. 引言
我们的模型性能接近为相同 EF 分类问题开发的当前 SOTA(最先进)分类器,这突显了其质量。例如,我们的准确率高于最新模型,同时与最佳 SOTA 准确率相差 5 分以内。我们的 AUC 也高于最新模型,与最佳 SOTA AUC 相差 6 分以内。a R3D Transformer,ResNet18 主干。b 未公开的算法。c 具有空洞卷积的 3D 卷积神经网络。d GSM,Inception 主干,32 帧超声心动图。e 移动 U-Net。