图 4 | 通过体内 HTS 鉴定的 BBB 穿透性 PepTGN 的进入受体图谱。A. PepTGN 是一种通过体内噬菌体展示鉴定的脑穿透肽,具有未知的 BBB 进入机制。我们利用 μMap 研究其胞吞运输途径。B. 在冰上对两种不同的细胞系(hCMEC/d3,如图所示,和 bEND.3 细胞)进行 15 分钟的 μMap 实验,以鉴定潜在的进入受体。在两个火山图中鉴定出的最热门受体之一是降钙素受体样受体(CALCRL,粉色),这是一种参与肽信号传导的 G 蛋白偶联受体 (GPCR)。实验还揭示了网格蛋白(GAK 和 NECAP2,栗色)和动力蛋白(DNM2,栗色)。C. 进行了阻断实验以验证 CALCRL 是否为 PepTGN 的进入受体。这些研究表明,当细胞与天然配体 CGRP 或单克隆抗体 Erenumab 预孵育时,肽摄取量显著减少。相反,与对照同种型抗体孵育对内化没有影响。
简介:深入描述行星风化层对于推进行星科学研究、空间工程和未来表面任务的成功至关重要 [1]。了解原位风化层的环境和地质力学特性,包括其强度、变形行为和水/冰含量,对于验证探测车操作、了解地质历史和确定资源可用性至关重要。为此,土壤特性评估阻力和热分析 (SPARTA) 工具包 [1] 已被开发为一套多功能、低质量、低功耗的传感器套件,它将以前所未有的空间分辨率表征月球和行星风化层的物理和化学特性 [1]。它是一个多功能系统,可以部署在自动或载人探测车和着陆器上,也可以作为宇航员在包括月球和火星 [1] 在内的不同行星表面探索过程中的手持工具使用。 SPARTA 由四个子系统组成,即锥体穿透测试仪 (CPT)、叶片剪切测试仪 (VST)、热导率探针 (TCP) 和介电光谱探针 (DSP),旨在提供详细的地下分析,以确定月球风化层的物理特性并确定冰的浓度和空间分布。SPARTA CPT 能够表征地下地层和月球风化层的承载强度。在这里,我们旨在使用 SPARTA CPT 进行测量,以建立锥体穿透阻力与穿透材料密度之间的定量关系 [2]。
使用适当的3D建模软件分别创建了头部模型的每个组织和生物器官。文献中的电磁参数分配给模型内的每个器官和组织,图。2,并进口到CST。这些参数为:相对介电介电常数(εr),比电导率(σ)和组织密度(ρ)。这些参数强烈影响电磁波的传播,反射和衰减。对于已经进行了数值模拟的2600 MHz频率,上述参数列于表1 [20]。连接头隔室时,必须确保分离表面不会重叠。仅以这种方式,才能正确满足边界条件。
集成的布拉格光栅无处不在,在光学通信中找到了他们的主要应用。它们主要用作波长划分多路复用(WDM)的过滤器[1]。它们在激光器中用作分布式Bragg反射器(DBR)[2]和分布式反馈(DFB)激光器[3]的镜子。他们还找到了他们在传感中的应用[4]。此外,它们是集成腔分散工程的重要组成部分[5,6]。集成的Bragg反射器已使Fabry-Pérot(FP)微孔子中有趣的表演达到了实现。仔细研究这些空腔,对分散补偿策略的兴趣不大,例如,将分散元素补偿元素在空腔体系结构中[5]进行了整合。使用色散bragg反射器证明了综合微孔子中的耗散kerr孤子(DKSS)[7]。通常需要这些光源来产生非常短的脉冲持续时间,即飞秒级,用于高精度计量学级的飞秒源的应用,并用于产生跨越频率的宽带频率梳子,这些频率从数十吉赫赫兹到Terahertz。这种非线性机制开辟了增加相干光学通信系统带宽[8,9]的可能性,以满足增加的数据速率需求。最近,由两个光子晶体谐振器组成的Q-因子为10 5的纳米制作的FP谐振器已成功证明了KERR频率 - 兼而产生[10]。这个概念是在反射器的背景下进行分析描述的。因此,在FP微孔子中,布拉格反射器的广泛采用以进行分散补偿变得越来越重要。虽然用作反射器的Bragg光栅提供了广泛的功能,但设备物理学中存在一个潜在的问题。当光反射器反射光时,它不会从光栅开始的点上进行反映。为了解决这个问题,研究人员检查了渗透深度的概念或闪光的有效长度,称为l eff。该术语是指定义实际反射点的bragg反射器内的虚拟移位接口。
摘要:电池储能系统 (BESS) 的优化因其众多优势(例如提高能源效率、成本效益和促进网络稳定性)而越来越受到消费者的欢迎。随着电动汽车 (EV) 电池的老化,在拆卸电池后进行有效管理对于提高能源效率至关重要。在这种情况下,将二次电池 (SLB) 重新用于 BESS 应用提供了一种非常有吸引力的直接回收或处置替代方案,既具有经济效益又具有环境效益。因此,本研究旨在通过比较 IEEE 14 总线中的新电池和 SLB 来确定 BESS 的最佳尺寸和位置。该分析侧重于开发基于高光伏 (PV) 渗透率、集成运营和投资成本的经济高效的能源系统,使用从线性化网络得出的直流最优功率流 (DC-OPF) 模型。结果表明,与没有 BESS 的情况相比,优化 BESS 分别使光伏渗透率和未供应能源成本降低 2.28% 和 3.38%。此外,25%的光伏渗透率分别使新电池和SLB的每日总运营成本降低约38.89%和74.77%。
CRISPR 基因编辑提供了前所未有的基因组和转录组控制,可精确调节细胞功能和表型。然而,将必要的 CRISPR 成分递送至治疗相关的细胞类型且不产生细胞毒性或意外副作用仍然具有挑战性。病毒载体存在基因组整合和免疫原性的风险,而非病毒递送系统难以适应不同的 CRISPR 载体,而且许多系统具有高度的细胞毒性。精氨酸-丙氨酸-亮氨酸-丙氨酸 (RALA) 细胞穿透肽是一种两亲性肽,它通过与带负电荷的分子的静电相互作用自组装成纳米颗粒,然后将它们递送到细胞膜上。与其他非病毒方法相比,该系统已用于将 DNA、RNA 和小阴离子分子递送至原代细胞,且细胞毒性较低。鉴于 RALA 的低细胞毒性、多功能性和有竞争力的转染率,我们旨在将这种肽建立为一种新的 CRISPR 递送系统,适用于各种分子格式,适用于不同的编辑模式。我们报告称,RALA 能够有效地封装 DNA、RNA 和核糖核酸蛋白 (RNP) 格式的 CRISPR 并将其递送至原代间充质干细胞 (MSC)。RALA 与市售试剂之间的比较表明,其细胞活力更佳,可导致更多的转染细胞并维持细胞增殖能力。然后,我们使用 RALA 肽将报告基因敲入和敲除到 MSC 基因组中,以及转录激活治疗相关基因。总之,我们将 RALA 确立为一种强大的工具,可以更安全有效地以多种货物格式递送 CRISPR 机制,用于广泛的基因编辑策略。
埃及Sohag University的医学院通用外科系 *通讯作者:Ahmed Omar Ragheb,手机:(+20)01066663969,电子邮件:ahmedragheb@med@ahmedragheb@med.sohag.edu.eg.eg.eg.eg摘要背景:患者穿透性腹部创伤与患者有时与严重的敏锐性相关。 穿透创伤的发生率在世界上差异很大。 同样,创伤患者中腹腔镜检查的全球经验也有所不同。 最近的许多研究表明,在这种情况下,腹腔镜检查起有用的功能。 目的:本研究旨在评估腹腔镜在穿透性腹部外伤(PAT)患者中的诊断和治疗效用,以避免护理的精度和有效性以及避免不必要的腹腔切开术。 患者和方法:这项前瞻性研究是在埃及Sohag的Sohag大学医院进行的。 我们包括所有具有稳定的肌肉前壁壁损伤的患者。 结果:我们参与了60名患者,他们因腹部受伤而被送入急诊室。 患者的平均年龄为37.4岁,男性患者的百分比更高(81.67%)。 刺伤占伤害的60%,而枪伤占40%。 由于胃,小肠和结肠损伤,腹腔镜住院的住院时间更长。 腹腔镜的平均操作时间为2.5小时,剖腹手术时间约为2.25小时。 在研究患者中发现的术后泄漏或伤口感染的形式没有术后并发症。 简介埃及Sohag University的医学院通用外科系 *通讯作者:Ahmed Omar Ragheb,手机:(+20)01066663969,电子邮件:ahmedragheb@med@ahmedragheb@med.sohag.edu.eg.eg.eg.eg摘要背景:患者穿透性腹部创伤与患者有时与严重的敏锐性相关。穿透创伤的发生率在世界上差异很大。同样,创伤患者中腹腔镜检查的全球经验也有所不同。最近的许多研究表明,在这种情况下,腹腔镜检查起有用的功能。目的:本研究旨在评估腹腔镜在穿透性腹部外伤(PAT)患者中的诊断和治疗效用,以避免护理的精度和有效性以及避免不必要的腹腔切开术。患者和方法:这项前瞻性研究是在埃及Sohag的Sohag大学医院进行的。我们包括所有具有稳定的肌肉前壁壁损伤的患者。结果:我们参与了60名患者,他们因腹部受伤而被送入急诊室。患者的平均年龄为37.4岁,男性患者的百分比更高(81.67%)。刺伤占伤害的60%,而枪伤占40%。由于胃,小肠和结肠损伤,腹腔镜住院的住院时间更长。腹腔镜的平均操作时间为2.5小时,剖腹手术时间约为2.25小时。在研究患者中发现的术后泄漏或伤口感染的形式没有术后并发症。简介结论:刺伤比枪伤更为常见,腹腔镜方法被证明是准确有效的,可以在PAT的管理中有效,并成功避免了不必要的腹腔切开术。患者经历了简单的病程,没有术后并发症和相对较短的住院治疗。应进行进一步的研究和研究,以评估PAT病例中腹腔镜检查的长期结局和潜在益处,包括较大的样本量和比较分析。关键字:腹腔镜检查,剖腹手术,穿透性腹部损伤,诊断准确性,治疗作用。
摘要:一种主要的瓶颈降低了各种药物的治疗功效,是只有一小部分给药剂量到达作用部位。增加目标组织中药物量的一种有希望的方法是通过用细胞表面受体配体修饰的纳米颗粒(NP)递送,以选择性地鉴定靶细胞。但是,由于受体结合可以无意间触发细胞内信号传导级联,因此我们的目标是开发一种独立于受体的NP摄取方式。细胞穿透肽(CPP)是一种有吸引力的工具,因为它们允许有效的细胞膜交叉。到目前为止,由于其促进能力是非特异性的,因此它们的适用性受到严重限制。因此,我们旨在将有条件的CPP介导的NP内在化仅在目标细胞中。我们合成了不同的CPP候选物,并研究了它们对核心 - 壳 - 壳纳米颗粒系统中的影响,ζ电位和吸收特征,该系统由聚(乳酸糖 - 糖果)(PLGA)(PLGA)(PLGA)和聚(乳酸)和甲基乙二醇(乙烯乙二醇)(PLA)(PLA 10 K PEG)(PLA 10K)组成的壳纳米颗粒系统(PLA)(PLA)(PLA 10K)钉部分。我们将TAT47-57(TAT)确定为最有前途的候选人,随后将TAT修饰的PLA 10K 10K PEG 2K 2K聚合物与更长的PLA 10K PEG 5K 5K聚合物链结合在一起,用有效的血管紧张素转换酶2(ACE2)Infimitor-2(ACE2)Infimitor Mln-47660进行了修饰。MLN-4760启用选择性目标细胞识别时,额外的PEG长度在第一个非特异性细胞接触期间隐藏了CPP。仅在MLN-4760与ACE2的先前选择性结合后,已建立的空间接近度暴露了CPP,从而触发了细胞的摄取。与未修饰的颗粒相比,我们发现ACE2阳性细胞的摄取量有18倍。总而言之,我们的工作为有条件的纳米颗粒摄取为有条件的,高度选择性受体依赖性的纳米颗粒摄取铺平了道路,这在避免副作用方面是有益的。关键字:纳米颗粒靶向,聚合物纳米颗粒,多精氨酸,TAT,纳米粒子表面电荷,聚阳离子,电荷介导的摄取,顺序摄取
东京大学工程研究生院生物工程系,东京Bunkyo-ku 7-3-1 Hongo,日本113-8656,B细胞和分子生物技术研究所(CMB)日本伊巴拉基305-8565。电子邮件:y.teramura@aist.go.jp;电话: + 81(0)29-861-6582 C能源与环境部电化学研究所,国家高级工业科学技术研究所(AIST),1-8-31 Midorigaoka,Ikeda,Ikeda,Ikeda,Ikeda,Ikeda,osaka,Osaka,Osaka,563-8577,日本D. HammarskjoéldsVag 20,SE-751 85,Uppsala,瑞典E硕士/博士学位/博士学位科学创新(T-LSI),Tsukuba大学,Tsukuba大学,1-1-1 tennodai,Tsukuba,Tsukuba,Ibaraki,Ibaraki,Ibaraki,Ibaraki,Ibaraki,Ibaraki 305-8577,日本日本日本†电子补充信息(ESI)。 参见doi:https://doi.org/ 10.1039/d4ma00193a电子邮件:y.teramura@aist.go.jp;电话: + 81(0)29-861-6582 C能源与环境部电化学研究所,国家高级工业科学技术研究所(AIST),1-8-31 Midorigaoka,Ikeda,Ikeda,Ikeda,Ikeda,Ikeda,osaka,Osaka,Osaka,563-8577,日本D. HammarskjoéldsVag 20,SE-751 85,Uppsala,瑞典E硕士/博士学位/博士学位科学创新(T-LSI),Tsukuba大学,Tsukuba大学,1-1-1 tennodai,Tsukuba,Tsukuba,Ibaraki,Ibaraki,Ibaraki,Ibaraki,Ibaraki,Ibaraki 305-8577,日本日本日本†电子补充信息(ESI)。参见doi:https://doi.org/ 10.1039/d4ma00193a
乳腺癌脑转移(BCBM)通常会导致末期诊断,并且由于缺乏脑穿透剂药物而受到阻碍。大脑中的肿瘤依赖于乙酸乙酰辅酶A乙酰辅酶A的转化为乙酰辅酶A合成酶2(ACSS2),这是脂肪酸合成和蛋白乙酰化的关键调节剂。 在这里,我们使用计算管道来识别新型的脑渗透ACSS2抑制剂结合了基于药丸的形状筛选方法与吸收,分布,代谢和排泄(ADME)性质预测。 我们确定了AD-5584和AD-8007的化合物,这些化合物已通过特定结合的ACSS2进行了验证。 用AD-5584和AD-8007处理BCBM细胞会导致菌落形成,脂质储存,乙酰-COA水平和细胞存活的体外显着降低。 在体内脑肿瘤切片模型中,用AD-8007和AD-5584处理可减少预成型肿瘤,并在阻断BCBM肿瘤生长的情况下随着辐射而协同作用。 AD-8007治疗减轻了肿瘤负担和体内延长的生存率。 这项研究确定了对乳腺癌脑转移有效率的选择性脑渗透ACSS2抑制剂。大脑中的肿瘤依赖于乙酸乙酰辅酶A乙酰辅酶A的转化为乙酰辅酶A合成酶2(ACSS2),这是脂肪酸合成和蛋白乙酰化的关键调节剂。在这里,我们使用计算管道来识别新型的脑渗透ACSS2抑制剂结合了基于药丸的形状筛选方法与吸收,分布,代谢和排泄(ADME)性质预测。我们确定了AD-5584和AD-8007的化合物,这些化合物已通过特定结合的ACSS2进行了验证。用AD-5584和AD-8007处理BCBM细胞会导致菌落形成,脂质储存,乙酰-COA水平和细胞存活的体外显着降低。在体内脑肿瘤切片模型中,用AD-8007和AD-5584处理可减少预成型肿瘤,并在阻断BCBM肿瘤生长的情况下随着辐射而协同作用。AD-8007治疗减轻了肿瘤负担和体内延长的生存率。这项研究确定了对乳腺癌脑转移有效率的选择性脑渗透ACSS2抑制剂。
