a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
最先进的基于深度学习的立体匹配方法将视差估计视为一个回归问题,其中损失函数直接定义在真实视差及其估计视差上。然而,视差只是由成本量建模的匹配过程的副产品,而间接学习由视差回归驱动的成本量容易出现过度拟合,因为成本量受到约束。在本文中,我们提出直接向成本量添加约束,方法是用在真实视差处达到峰值的单峰分布过滤成本量。此外,估计每个像素的单峰分布的方差,以明确模拟不同环境下的匹配不确定性。所提出的架构在 Scene Flow 和两个 KITTI 立体基准上实现了最先进的性能。具体来说,我们的方法在 KITTI 2012 评估中排名第一,在 KITTI 2015 评估中排名第四(记录于 2019.8.20)。AcfNet 的代码可以在以下位置找到:https://github.com/youmi-zym/AcfNet。
因此,标准空中三角测量方法通常无法处理使用 UAV Haala 2012 获取的图像。现在有各种开源和商业密集立体匹配工具可用于应对这些挑战。采用源自计算机视觉并广泛用于近景摄影测量或地面摄影的算法(特征检测 SIFT、SfM)(Lowe 2004、Bryson 2010、Hauagge 2012)。以高度自动化的方式,可以估计相机几何形状并从一组重叠图像中计算 3D 模型,且不受尺度、方向、失真和照明变化的影响(Neitzel 2011、Turner 2012)。图像匹配得到的点云可以以与机载或地面激光扫描得到的点云类似的方式进行进一步处理,并且通常与激光扫描数据相结合。
关键词:立体匹配,半全局匹配,SIFT,密集匹配,视差估计,普查 摘要:半全局匹配(SGM)通过平等对待不同路径方向进行动态规划。它没有考虑不同路径方向对成本聚合的影响,并且随着视差搜索范围的扩大,算法的准确性和效率急剧下降。本文提出了一种融合SIFT和SGM的密集匹配算法。该算法以SIFT匹配的成功匹配对为控制点,在动态规划中指导路径,并截断误差传播。此外,利用检测到的特征点的梯度方向来修改不同方向上的路径权重,可以提高匹配精度。基于 Middlebury 立体数据集和 CE-3 月球数据集的实验结果表明,所提算法能有效切断误差传播,缩小视差搜索范围,提高匹配精度。
因此,标准空中三角测量方法通常无法处理使用 UAV Haala 2012 获取的图像。现在有各种开源和商业密集立体匹配工具可用于应对这些挑战。采用计算机视觉算法(特征检测 SIFT、SfM),广泛用于近距离摄影测量或地面摄影(Lowe 2004、Bryson 2010、Hauagge 2012)。可以以高度自动化的方式估计相机几何形状并从一组重叠图像中计算 3D 模型,不受比例、方向、失真和照明变化的影响(Neitzel 2011、Turner 2012)。图像匹配产生的点云可以以与机载或地面激光扫描产生的点云类似的方式进行进一步处理,并且通常与激光扫描数据相结合。