sherin.dr@iiitmk.ac.in & manojtk@iiitmk.ac.in 摘要:正常细胞的基因组身份受端粒保护,有时由于细胞连续分裂导致端粒酶缩短,从而观察到染色体不稳定性。报告表明,端粒酶长度对于确定端粒酶活性至关重要,而端粒酶活性又会导致癌症发生。据报道,端粒长度调节已被确定为一种可行的癌症诊断和治疗策略。在本 MS 中,我们使用计算方法探索了儿茶素类似物及其低聚物的端粒酶抑制活性。使用密度泛函理论计算了 MS 中讨论的不同配体的结构性质。使用计算方法探索了不同色烯亚基(例如 2R、3R 构象)的构象效应。还研究了这些配体对受体结合的立体化学贡献,例如配体内 π 相互作用。我们在此提出,儿茶素及其低聚物的立体化学方面是决定与端粒酶 N 端结构域有效结合的最重要因素,而这种结合是癌症治疗的有效策略。
Telomir Pharmaceuticals是一家临床前阶段的生物制药公司,开发了一种旨在延长DNA保护性端粒帽的产品。先前报道的临床前测试表明,该公司的主要疗法Telomir-1可以延长端粒,初始动物测试说明了潜在的影响。实际上,该公司最近发布了其中一项测试的结果,据首席执行官埃雷斯·阿米诺夫(Erez Aminov)称,“确认telomir-1可以逆转生物学衰老,延长寿命的同时保持健康。”公司管理公司刚刚发布了2024年的年度报告,该报告显示了该公司在进行研究方面的进展,同时还显示出现金余额的改善,这是一家公司在此阶段的非常积极的发展。该公司最近还发布了端粒链球研究对人类细胞系的临床前研究的潜在突破性结果。来自测试的数据表明,Telomir-1“完全反向铜诱导的活性氧(ROS)升高并提供了可抗铜毒性的鲁棒细胞保护。”当自由基(ROS)和体内抗氧化剂之间存在不平衡时,就会发生氧化应激,从而导致细胞损伤。自由基是可能损害蛋白质,DNA和细胞膜的不稳定分子,而抗氧化剂有助于中和它们。这种不平衡会导致衰老,并与各种疾病的发展有关。它也与慢性阻塞性肺部疾病(COPD)和肾脏疾病等疾病的并发症有关。这种氧化损害加剧了疾病的进展,并增加了严重结果的风险。氧化应激在慢性疾病中起关键作用,例如心血管疾病(例如,动脉粥样硬化和高血压),神经退行性疾病(例如,阿尔茨海默氏病和帕金森氏病),糖尿病,糖尿病,癌症,癌症和炎症性疾病。telomir正在评估端粒-1的治疗病毒感染,例如禽流感,也称为鸟流感,其中氧化应激是疾病严重程度的关键因素。病毒感染触发并利用过多的ROS产生作为促进复制的模式,导致广泛的炎症,细胞损伤和免疫反应受损。根据该公司的说法,目前尚无批准的药物,专门针对由鸟类流感或类似病毒引起的氧化应激。 telomir-1逆转氧化应激和保护细胞的能力为解决这一差距提供了有希望的途径。 通过减轻与氧化应激相关的细胞损伤,telomir-1具有在降低此类感染的严重程度中发挥关键作用的潜力。根据该公司的说法,目前尚无批准的药物,专门针对由鸟类流感或类似病毒引起的氧化应激。telomir-1逆转氧化应激和保护细胞的能力为解决这一差距提供了有希望的途径。通过减轻与氧化应激相关的细胞损伤,telomir-1具有在降低此类感染的严重程度中发挥关键作用的潜力。
地址:Maceió,Alagoas Brasil电子邮件:gustavorbsbiomedico@gmail.com摘要考虑到衰老是一种生化过程,其特征是大分子分子损害和组织更新的损害的积累,目的是研究生物标志物和细胞衰落之间的关系。衰老是由细胞周期响应DNA损伤或细胞应激的中断表现出来的,是衰老的主要特征之一。为此,分析了生物标志物,包括DNA损伤,炎症,端粒和氧化应激,这对于监测临床环境中的健康和疾病至关重要。因此,观察到,与衰老相关的遗传生物标志物的鉴定为细胞和组织衰老的生物学机制提供了有价值的见解。这使您得出结论,生物标志物的研究是开发新分子靶标的必不可少的工具,这有助于创建药物,疗法和美学干预措施,可促进健康的衰老并最大程度地减少与年龄相关的慢性疾病的影响。关键字:衰老,细胞衰老,生物标志物,端粒。抽象考虑到衰老是一种生化过程,其特征是大分子损害的积累和承诺的组织更新,目的是研究
杨梅 (Myrica rubra 或 Morella rubra;2n = 16) 所产果实风味独特、营养丰富、经济价值高。然而,先前版本的杨梅基因组缺乏序列连续性。此外,迄今为止,尚无大规模种质资源关联分析检查过决定果实品质性状的等位基因和遗传变异。因此,在本研究中,我们使用 PacBio HiFi 长读长为品种‘早嘉’组装了一个端粒到端粒 (T2T) 无间隙参考基因组。得到的 292.60 Mb T2T 基因组揭示了 8 个着丝粒区域、15 个端粒和 28 345 个基因。这代表着杨梅基因组的连续性和完整性的显著提高。随后,我们对 173 个种质进行了重新测序,鉴定出 6 649 674 个单核苷酸多态性 (SNP)。此外,29 个果实品质相关性状的表型分析促成了全基因组关联研究 (GWAS),该研究鉴定了与 28 种性状显著相关的 1937 个 SNP 和 1039 个基因。在 Chr6:3407532 至 5 153 151 bp 区域上鉴定了一个与果实颜色相关的 SNP 簇,包含两个 MYB 基因(MrChr6G07650 和 MrChr6G07660),这些基因在极端表型转录组中表现出差异表达,与花青素合成有关。一个相邻的、紧密连锁的基因 MrChr6G07670(MLP 样蛋白)包含一个外显子错义变体,经证实可使烟草叶片中的花青素产量增加十倍。这个 SNP 簇可能是一个数量性状基因座 (QTL),它共同调控杨梅果实的颜色。总之,我们的研究提出了一个完整的参考基因组,揭示了一系列与果实品质性状相关的等位基因变异,并确定了可以利用来提高杨梅果实品质和育种效率的功能基因。
几个实验室已经能够将基本组成部分分离为酵母染色体的活性。这些成分包括丝粒,负责染色体运动的负责;一个这样称呼的自主复制序列,是导致细胞分裂和端粒之间染色体复制的重复,即完成染色体重复所需的染色体末端。当任何染色体的这些元素被分离和融合,然后重新引入酵母细胞时,它们在细胞分裂中的表现几乎像正常染色体一样。 ”
摘要:离子通道和 G 蛋白偶联受体 (GPCR) 的突变并不少见,可导致心血管疾病。鉴于先前报道的与高突变率相关的多种因素,我们根据 (i) 靠近端粒和/或 (ii) 高腺嘌呤和胸腺嘧啶 (A+T) 含量对多个人类基因的相对易变性进行了排序。我们使用基因组数据查看器提取基因组信息,并根据与因素 (i) 和 (ii) 的关联检查了 118 个离子通道和 143 个 GPCR 基因的易变性。然后,我们用 31 个编码离子通道或 GPCR 的基因评估了这两个因素,这些基因是美国食品药品管理局 (FDA) 批准的药物所针对的。在所研究的 118 个离子通道基因中,80 个符合因素 (i) 或 (ii),匹配率为 68%。相比之下,143 个 GPCR 基因的匹配率为 78%。我们还发现,FDA 批准药物靶向的 GPCR 基因(n = 20)的突变性相对低于编码离子通道的基因(n = 11),而编码 GPCR 的靶基因长度较短。本研究结果表明,使用因子药物基因组的匹配率分析来系统地比较 GPCR 和离子通道的相对突变性是可行的。通过两个因子对染色体的分析确定了 GPCR 的一个独特特性,它们的核苷酸大小与端粒的接近程度之间存在显着关系,这与大多数易患人类疾病的基因位点不同。
CRISPR/Cas 已成为多种生物体中遗传操作的最先进的技术,能够以前所未有的效率进行有针对性的遗传改变。本文中,我们报告了在重要的坏死性植物病原体灰霉病中首次建立强大的 CRISPR/Cas 编辑,该方法基于将优化的 Cas9-sgRNA 核糖核蛋白复合物 (RNP) 引入原生质体。通过开发一种将 RNP 递送与含端粒的瞬时稳定载体共转化相结合的新策略,进一步提高了编辑产量,从而允许临时选择和方便地筛选无标记编辑事件。我们证明,与现有的基于 CRISPR/Cas 的丝状真菌方法(包括模型植物病原体稻瘟病菌)相比,这种方法提供了更高的编辑率。编辑菌株的基因组测序显示很少有额外的突变,也没有 RNP 介导的脱靶证据。端粒载体介导编辑的高性能通过随机诱变 sdhB 基因的 272 个密码子得到证实,该基因是琥珀酸脱氢酶抑制剂 (SDHI) 杀菌剂抗性的主要决定因素,方法是将 272 个密码子批量替换为编码所有 20 种氨基酸的密码子。在没有选择的情况下,所有交换的频率都相似,但 SDHI 选择允许识别新的氨基酸替换,这些替换赋予了对不同 SDHI 杀菌剂的不同抗性水平。基于 RNP 的共转化效率提高且易于操作,有望加速 B . cinerea 和其他真菌的分子研究。
。CC-BY 4.0 国际许可永久有效。它是在预印本下提供的(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在
如果发现衰老的生物标志物,那么衰老(称为老年疗法)的进程将会加快,这样就可以像检测高胆固醇或高血压一样对其进行检测。他还解释说,已经确定了许多蛋白质与人类衰老有关,并且常用的糖尿病药物二甲双胍已被证明可以降低死亡率并延长寿命。事实上,研究表明二甲双胍可以减轻衰老的所有生物学特征,包括细胞衰老、干细胞衰竭、端粒磨损、表观遗传改变和基因组不稳定性。因此,通过减缓衰老,二甲双胍还可以降低与年龄相关的疾病的风险。此外,二甲双胍是通用的、便宜的,并且已被证明是安全的,具有