iMetelstat是一种寡核苷酸人端粒酶抑制剂,与人端粒酶RNA成分(HTR)的RNA成分的模板区域结合,抑制端粒酶酶促活性并预防端粒结合。在MDS和恶性茎和祖细胞中已经报道了端粒酶活性增加和人端粒酶逆转录酶(HTERT)RNA表达。非临床研究表明,imetelstat治疗导致端粒长度的减少,恶性茎和祖细胞细胞增殖的减少以及凋亡细胞死亡的诱导。
1 国际癌症研究机构/世界卫生组织 (IARC/WHO) 基因组流行病学分部,法国里昂;2 牛津大学癌症流行病学系,英国牛津;3 布里斯托尔医学院 (PHS) 布里斯托尔人口健康科学研究所 MRC 综合流行病学系,英国布里斯托;4 莱斯特大学心血管科学系,英国莱斯特;5 NIHR 莱斯特生物医学研究中心,格伦菲尔德医院,英国莱斯特;6 瑞士洛桑生物与医学学院路德维希洛桑分校;7 贝勒医学院临床与转化研究所,美国休斯顿;8 西奈健康中心 Lunenfeld-Tanenbaum 研究所,加拿大多伦多;9 斯坦福大学流行病学与人口健康系,美国斯坦福
上皮,也称为尤其元素或上皮龙,是一种源自可谓上催化升高的天然化合物的合成肽,该肽是在松果体中产生的。最初是由俄罗斯科学家弗拉基米尔·哈文森(Vladimir Khavinson)教授发现和研究的。上皮以其潜在的抗衰老作用而闻名,这些作用归因于其在调节端粒酶的作用,端粒酶是一种可以拉长端粒的酶,即染色体末端的保护结构。随着时间的流逝,随着细胞分裂而缩短端粒,这与衰老和细胞衰老有关。
全基因组测序和组装彻底改变了植物遗传学和分子生物学。然而,第一代和第二代技术的显着缺点导致了不完善的参考基因组:高质量或不确定的序列的大量和较大的差距高度重复性DNA的领域以及有限的染色体相限制,研究人员限制了研究人员表征最近期犯罪事件的调节性非编码元素和谱系区域的能力。最近,长阅读测序的进步导致了植物基因组的第一个无间隙,端粒到端粒(T2T)组件。这种飞跃有可能提高基因组学和分子实验的速度和信心,同时降低研究界的成本。
摘要:哺乳动物端粒长度主要受端粒酶调控,端粒酶是一种由逆转录酶(TERT)和RNA亚基(TERC)组成的核糖核蛋白。TERC在所有细胞中均有组成性表达,而TERT表达则在时间和空间上受到调控,因此在大多数成年体细胞中,TERT处于失活状态,端粒酶活性无法检测到。大多数肿瘤细胞激活TERT作为阻止进行性端粒磨损的机制,以实现增殖永生。因此,失活TERT被认为是一种有前途的癌症治疗方法。在这里,我们应用CRISPR / Cas9基因编辑系统靶向癌细胞中的TERT基因。我们报告称,TERT的破坏严重损害了癌细胞在体外和体内的存活率。 TERT 在肿瘤细胞中的单倍体不足足以导致体外端粒磨损和生长迟缓。在体内,TERT 单倍体不足的肿瘤细胞在移植到裸鼠后未能形成异种移植物。我们的工作表明,基因编辑介导的 TERT 敲除是治疗癌症的潜在治疗选择。
我们利用孟德尔随机化(MR)来评估白细胞端粒长度(LTL)和肌醇侧面硬化症(ALS)之间的因果关系以及基因组范围研究的汇总统计数据(n = 〜38,000 n = 〜38,000 for ltl and 〜31,000 for ltl and 〜81,000,欧洲人群中的ltl;我们进一步评估了脂质在从LTL到ALS的途径中的介导作用。在欧洲人群中,ALS上LTL的每标准偏差降低为1.10(95%CI 0.93-1.31,p = 0.274),在亚洲人群中为0.75(95%CI 0.53–1.07,p = 0.116)。在欧洲人口中的LTL和额颞痴呆之间也发现了这种无效的关联。但是,我们发现LTL对ALS的间接影响可能是由低密度脂蛋白(LDL)或总胆固醇(TC)介导的欧洲人群。这些结果对广泛的灵敏度分析是可靠的。总的来说,我们的MR研究不支持LTL与ALS风险之间的直接因果关系,而是为LDL或TC对LTL和ALS在欧洲人群中的影响提供了暗示性的证据。
参加的会议 George-Rafael Samantsidis、Andrias O. O'Reilly、Vassilis Douris、John Vontas. (2019) 通过 CRISPR-Cas9 基因组工程对果蝇钠通道突变 F1845Y 和 V1848I 对钠通道阻滞剂杀虫剂 (SCBI) 的贡献进行功能验证。第八届国际分子昆虫科学研讨会,7 月 7-10 日,西班牙巴塞罗那锡切斯。 Douris V、Papapostolou KM、Samantsidis GR、Panteleri R、Christou IK、Riga M、Nauen R、Van Leeuwen T、Vontas J. (2018) 通过基因操作和基因组改造解剖果蝇的杀虫剂抗性。第十一届欧洲昆虫学大会 (ECE2018),7 月 2-6 日,意大利那不勒斯。 V. Douris、M. Riga、A. Ilias、R. Panteleri、IK Christou、S. Kounadi、KM Papapostolou、GR Samantsidis、M. Kefi、T. Van Leeuwen 和 I. Vontas。(2017 年)通过异源基因表达和靶向基因组编辑研究果蝇杀虫剂抗性的不同分子机制的贡献。第 17 届希腊昆虫学大会于 9 月 19-22 日在希腊雅典农业大学举行。 Saishyam, N., Gustafsson, C., Samantsidis GR ,Cohn, M. (2014) 体外评估 Cdc13 对端粒单链 3 悬垂降解的保护作用,4 月 30 日至 5 月 4 日在比利时布鲁塞尔 Husa President Park Hotel 举行的“端粒、端粒酶和疾病”国际会议论文集。 Saishyam, N., Gustafsson, C., Samantsidis GR ,Cohn, M. (2015) Rap1p 和 Cdc13p 对端粒 ds-ss 连接处 DNA 5' 端的保护,4 月 28 日至 5 月 2 日在美国纽约举行的第九届冷泉港“端粒和端粒酶”会议论文集。
我们对组蛋白修饰的调节和功能的理解自1960年代中期首次报道以来已经有了很长的路要走。也是如此,我们对DNA甲基化,组蛋白变体,核小体位置和排列的重要性以及逐渐影响DNA检测过程发生的高阶结构的重要性。最近的进步甚至允许从端粒到端粒的单个染色体的第一个完整的测序和表观基因组学纤维,包括以前对分析难治性的高度重复性区域。染色质组织在基因转录,DNA复制,重组和修复方面的调节能力是无可争议的。仍然,一个持续的挑战是了解影响细胞和组织(无处不在)过程以及每种变化如何影响他人的全部变化(所有事物)。
哺乳动物基因组序列组装的进展 了解基因功能的第一步是识别基因本身,从而获得基因组序列。从人类基因组序列的第一稿到端粒到端粒的版本,花了二十多年的时间[1]。然而,从 2000 年开始,哺乳动物基因组序列的初始草图成为更大规模解读哺乳动物基因功能的重要资源。这是通过生成基因靶向 ES 细胞和小鼠的集合来实现的[2,3],支持研究界进行功能研究和挖掘人类表型/临床信息[4]。虽然参考序列是理解生物体水平基因功能的重要基石,但组装人类泛基因组所需的大部分信息仍然缺失。泛基因组序列信息将捕捉人类种族之间乃至人类个体之间的基因组变异性
长阅读测序技术的最新进展使从端粒到端粒的真核基因组的完整组装得以通过允许重复的区域进行完全测序和组装,从而填补了以前的简短阅读测序方法所留下的空白。此外,长阅读测序还可以帮助表征结构变异,并在基因组进化或癌症基因组领域中应用。对于许多生物体,对序列长读数的主要瓶颈仍然缺乏获得高分子重量(HMW)DNA的强大方法。为此,我们开发了一种优化的方案,可以根据CTAB/苯酚提取,提取适合于单细胞绿色藻层reinhardtii的长阅读测序的DNA,然后是长DNA分子的尺寸选择步骤。我们为提取方案提供验证结果,以及牛津纳米孔技术测序获得的统计数据。