塑料的广泛使用导致微塑料遍布地球( Thompson 等人,2004 年;Wang 等人,2019 年)。这些微小颗粒已在南极海冰、栖息在最深海沟的海洋动物肠道以及世界各地的饮用水中检测到。微生物是地球上所有生命的基础,并通过其各种活动在维持生命方面发挥着重要作用( Liu 等人,2021 年)。研究微塑料与微生物之间的相互作用具有重要意义,原因有很多,例如涵盖环境、生态、人类健康和社会经济层面( Wang 等人,2021 年)。例如,鉴定能够降解微塑料的微生物可以制定合理的修复策略,为减轻塑料污染提供潜在的解决方案。尽管过去几十年来在理解不同环境中微塑料和微生物之间的关系方面取得了重大进展,但由于其固有的复杂性,我们对这些相互作用的理解仍然有限。本期虚拟特刊(VSI)中的五篇论文主要关注两个主题:微塑料的微生物降解以及微塑料与病毒之间的相互作用。第一个主题涉及识别能够有效降解微塑料的细菌和微生物。在环境中,微塑料很容易形成富含微生物的塑料球,这意味着微生物介导的塑料降解可能是解决塑料污染的可行方法。研究这一问题的常用方法是使用富集培养物来观察微生物群落的动态变化并识别能够降解微塑料的微生物。
第 14 条 敌对行动爆发时,各交战国及必要时在接收交战国领土的中立国设立战俘调查办公室。该办公室的职责是答复有关战俘的所有询问。它从各有关部门获得有关拘留和转移、假释、交换、脱逃、入院、死亡等全部信息,以及使其能够编制和更新每个战俘的个人报告所需的其他信息。该办公室必须在报告中说明团号、姓名、年龄、出生地、军衔、部队、伤情、被俘、拘留、受伤和死亡的日期和地点,以及任何特殊情况。个人报告应在缔结和平后送交另一交战国政府。
叶绿素荧光发射是由吸收的光能引起的,这些光能不会以热量的形式消散,也不会用于植物的光合作用反应。光合作用分为两个不同的部分,即光反应和二氧化碳 (CO 2 ) 固定。在光反应中,光能被用来生成氧化蛋白质复合物,该复合物能够在光系统 II (PSII) 中从水中提取电子,同时重新激发提取的电子以还原光系统 I (PSI) 中的 NADP +。这些“光收集”反应导致 ATP 和还原力(还原铁氧还蛋白和 NADPH)的形成,随后通过卡尔文 - 本森 - 巴沙姆循环进行 CO 2 固定。叶绿素 a 荧光分析可以确定直接用于光化学的吸收光能量,并估计生物或非生物胁迫下的光合作用效率 ( Moustakas 等人,2021 年;Moustakas,2022 年)。叶绿素 a 荧光信号可以根据光合作用活性进行解释,以获得有关光合作用机构状态的信息,尤其是光系统 II (PSII) 的状态信息 ( Murchie 和 Lawson,2013 年;Moustakas 等人,2021 年)。叶绿素荧光测量已广泛用于探测光合作用机制的功能和筛选不同作物以耐受各种压力和营养需求(Guidi 和 Calatayud,2014 年;Kalaji 等人,2016 年;Sperdouli 等人,2021 年;Moustakas 等人,2022a 年)。使用脉冲幅度调制 (PAM) 方法可以主要计算引导至 PSII 进行光化学反应的吸收光能量,这些能量通过非光化学猝灭 (NPQ) 机制以热量形式耗散或通过不太明确的非辐射荧光过程耗散,分别标记为 F PSII 、F NPQ 和 F NO ,它们的总和等于 1(Kramer 等人,2004 年)。在本研究中,我们总结了本期特刊中的文章,为读者更新了该主题,并讨论了叶绿素荧光的当前应用
作为我们上一篇社论的后续,本研究主题进一步深入探讨了对称性如何影响生物和人工神经网络中的信息处理。虽然上一篇研究主题侧重于对称性在感官输入及其在神经系统中的组织中的基础作用,但这篇社论除了继续该主题之外,还介绍了对称驱动表示背后的机制及其鲁棒性的新研究,特别是在人工神经网络中。事实上,对称性在简化输入数据的复杂性和提高神经网络的鲁棒性方面起着关键作用。在人工系统和大脑中,对称性有助于创建有效的表示,可以很好地推广到看不见的数据并减轻从大数据集中学习的负担。通过利用感官数据的不变性和等变性,神经网络(包括生物和人工)可以增强其解释和响应周围世界的能力。本研究主题进一步探讨了人工和生物系统中对称性、学习动力学和神经表征的交集。第一篇贡献,DiTullio 等人深入研究了大脑如何利用时间作为监督信号来学习听觉特征。通过探索听觉领域的自然规律和对称性,作者提出时间一致性是学习听觉对象表征的关键,尤其是在混乱的环境中。该研究表明,在听觉辨别任务中,捕捉这些时间规律的模型优于传统的特征选择算法,例如主成分分析 (PCA) 和独立成分分析 (ICA)。这对神经科学和机器学习都有深远的影响,表明刺激的时间结构为有效的感官处理和泛化提供了重要基础。视觉是另一种感官方式,其中对称性起着关键作用。本文 (Lindeberg) 提出了一个理论框架来理解大脑视觉感受野的几何特性。协方差或等方差确保感官输入的变换会导致神经表征的相应变换。对这些特性的研究揭示了初级视觉皮层 (V1) 中的视觉感受野如何适应空间缩放和
三十多年来,农杆菌介导的转化技术一直用于树果作物的基因工程。尽管在草本植物和一年生植物的水平上利用这项技术仍然存在许多障碍,但该领域已经取得了很大进展(Song 等人,2019 年)。在本研究主题的第二卷中,有论文描述了不同研究小组正在采取的方法,以促进难处理的树种的遗传转化,并在更基本的层面上了解 T-DNA 插入宿主细胞基因组的机制。在一项优雅的研究中,Gelvin 等人研究了 T 环的形成作为理解 T-DNA 整合的代理。在这项工作中,从转基因植物本氏烟或拟南芥中形成的 T 环中详细描述了与 LB-RB 连接相关的区域。结果表明,T 环中的 RB-LB 连接类似于 T-DNA 和发生整合的植物 DNA 之间的连接。相似之处包括:与 RB 相比,LB 处的缺失频率更高且序列变化更为广泛;连接位点存在微同源性;存在来自农杆菌或植物基因组的填充 DNA;多个 T-DNA 拷贝的多联体组织,其中 RB-RB 和 LB-LB 连接比 RB-LB 连接更常见。此外,作者还表明,T 环的形成即使在农杆菌 VirD2 基因中没有 Ku80 和 w 突变的情况下也能进行,其影响与对 T-DNA 整合的影响相似。根据他们的数据,作者提出 T 环的形成可用于研究 T-DNA 整合到宿主基因组的所有方面。大多数关于柑橘转化的已发表研究都仅使用了少数相对容易转化的品种的材料(Song 等人,2021 年)。 TAMU 的 Mandadi 团队(Dominguez 等人)开发了一种方法,可以促进 14 种柑橘品种的转化。他们通过在转化方案中使用的培养基中添加亚精胺和硫辛酸等补充剂,并使用含有额外 VirG 和 VirE 基因拷贝的辅助质粒 pCH32 来实现这一点。
NAVSUP P-485《海军补给程序》包含三卷。第一卷 - 海上补给、第二卷 - 补给附录和第三卷 - 岸上补给。除非另有说明,本手册中所有附录的引用均指第二卷中的附录。此外,第二卷中有一个涵盖所有三卷的词汇表。第三卷取代了 NAVSUP P-437(MILSTRIP/MILSTRAP 操作程序)。对第三卷的未来更改将纳入目前在 NAVSUP P-1 第二卷(岸上补给)中找到的程序。
本报告由美国国家标准与技术研究所(以下简称 NIST)作为主要发起人,并由美国土木工程师学会(以下简称 ASCE)、美国机械工程师学会(以下简称 ASME)、美国化学工程师学会(以下简称 AIChE)和美国采暖、制冷与空调工程师学会(以下简称 ASHRAE)由马里兰大学技术与系统管理中心及其合作伙伴和分包商(以下简称 UMD)共同编制。尽管本产品是使用最佳可用资源编制的,但 NIST、ASCE、ASME、AIChE 和 UMD 不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性作任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、工艺或服务并不一定构成或暗示 NIST、ASCE、ASME、AIChE、ASHRAE 和 UMD 的认可、推荐或支持。本报告中表达的观点是参与者的个人观点,并不反映参与者各自雇主的观点。
本报告由美国国家标准与技术研究所(以下简称 NIST)作为主要发起人,并由美国土木工程师学会(以下简称 ASCE)、美国机械工程师学会(以下简称 ASME)、美国化学工程师学会(以下简称 AIChE)和美国采暖、制冷与空调工程师学会(以下简称 ASHRAE)由马里兰大学技术与系统管理中心及其合作伙伴和分包商(以下简称 UMD)共同编制。尽管本产品是使用最佳可用资源编制的,但 NIST、ASCE、ASME、AIChE 和 UMD 不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性作任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、工艺或服务并不一定构成或暗示 NIST、ASCE、ASME、AIChE、ASHRAE 和 UMD 的认可、推荐或支持。本报告中表达的观点是参与者的个人观点,并不反映参与者各自雇主的观点。
超大尺寸的材料(例如地图、图纸、图表)通过分割原件进行复制,从左上角开始,从左到右以相等的部分继续复制,重叠很小。每张原件也都拍摄了一次,并以缩小的形式包含在书的后面。