2022年最常见的民用无人机应用程序是娱乐使用。但是,事实证明,它们对人类无法以安全且效率的方式进行的操作至关重要[1]。世界上无人机的数量每年增长13%,许多研究重点是提高其运营能力。他们的性能正在不断提高,它们是越来越多的应用程序的最佳解决方案。他们目前是基础架构监控,区域扫描,紧急交付服务和其他应用程序的最相关和成本效益的解决方案。它们也可以通过监视和喷洒田野,进行运输,以帮助限制城市中心的拥塞,以监视安全摄像机无法使用或更昂贵的地区,用于电信目的,以及将媒体和娱乐作为便宜的航空摄像机或创建新节目的地区,以帮助限制城市中心的交通,以帮助限制田野,以帮助限制田野的交通,以帮助限制。 他们还可以在智能城市中发挥重要作用,并在物联网(IoT)系统或无线传感器网络(WSN)中使用[2]。 uas由用于操作无人机及其通讯方式的所有组件组成。 以最简单的形式,一个UAS包括一个无人机和GC,但是高级系统可以包括其他参与者,例如UTM系统和中间地面站,用于管理不同无人机和最终用户之间的通信。 由于UAS的特征,大多数通信链接都是无线的。 如图2所示,UAS具有三个主要通信轴。 第二轴是在受控领空飞行时在UAS和UTM系统之间。。他们还可以在智能城市中发挥重要作用,并在物联网(IoT)系统或无线传感器网络(WSN)中使用[2]。uas由用于操作无人机及其通讯方式的所有组件组成。以最简单的形式,一个UAS包括一个无人机和GC,但是高级系统可以包括其他参与者,例如UTM系统和中间地面站,用于管理不同无人机和最终用户之间的通信。由于UAS的特征,大多数通信链接都是无线的。如图2所示,UAS具有三个主要通信轴。第二轴是在受控领空飞行时在UAS和UTM系统之间。首先,任何无人机和地面控制站(GCS)之间都有链接,命令,遥测,视频和其他特定于任务的数据都会传输。这些链接可以在物理或逻辑上分离,因为这些不同类型的数据并非总是在同一通道上发送。遥测信息从UAV或GCS发送到UTM系统,以监视流量和组织空间。反过来,UTM系统广播紧急地理围区,并根据其权威水平,向特定的无人机或GC发送传达建议或直接轨迹修改。最后,第三种通信发生在两个无人机之间。他们可以交换环境信息或用作路由器,以将数据传输到远程GCS或UTM。安全目标将根据传输信息的敏感性而有所不同。本文档审查了文献,以通过不同的加密技术来保护运输层以实现这些安全目标。
Justus Arne Schwarz博士生产管理学院主席Justus Arne Schwarz博士|雷根斯堡大学大学31 | 93053 Regensburg |德国|电话:+49(0)941 943 2277 |传真+49(0)941 943-2828电子邮件:justus.schwarz@ur.de |主页:https://www.uni-regensburg.de/wirtschaftswissenschaft/bwl-schwarzJustus Arne Schwarz博士生产管理学院主席Justus Arne Schwarz博士|雷根斯堡大学大学31 | 93053 Regensburg |德国|电话:+49(0)941 943 2277 |传真+49(0)941 943-2828电子邮件:justus.schwarz@ur.de |主页:https://www.uni-regensburg.de/wirtschaftswissenschaft/bwl-schwarz
摘要微生物学影响的腐蚀对水下考古遗址的影响刺激了研究的最新进展,研究了微生物与历史保护之间的联系。尽管钢铁残骸地点的微生物组一直是DNA测序研究和其他学科研究的主题,但铝制飞机残骸是第二次世界大战的突出象征,尚未成为类似研究的重点。本文代表了通过描述用于从夏威夷岛附近的第二次世界大战飞机站点获得样品的生物膜收集方法来填补这一空白的初步尝试。而不是依靠代理在沉船上或破坏性抽样上的微生物生长,而是重点是一种生产力但微不足道的方法论。协议导致了四个淹没飞机残骸的原位生物膜样品成功归类。该方法被发现负担得起,时间有效且可再现,因此对于考古站点管理而言是可行的。生物膜的可行原位收集方法的发展应有助于努力评估微生物学影响与淹没飞机的腐蚀的相关性,同时可以对微生物进行纵向研究,从而可能影响现场保存。
您的教学将由您自己的基于学科的奖学金以及您自己的实践和研究来告知您的教学。成功的候选人拥有博士学位,展示了出色的教学能力(On-On-OfflIne),具有强大的研究技能,并有望为定制的公司内部计划做出贡献。对于副教授和完整的教授级别,学术和行业职位的管理经验将被视为奖励。也将考虑使用西班牙语和英语教学的能力和愿意,因为成功的候选人将不得不使用两种语言进行互动。使用案例方法的教学经验被认为是加号。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
K. Anusha 1,R J Anandhi 2,Alok Jain 3,Monica Garg 4,Ali Saeed 5,K.D。Bodha 6* 1印度Telangana海得拉巴MLR理工学院CSE-AI&ML部门。2印度班加罗尔新地平线工程学院信息科学工程系。3印度Phagwara的可爱专业大学。 4劳埃德法学院,地块号 11,知识公园II,大诺伊达,北方邦201312。 5伊斯兰大学伊斯兰大学医学技术学院,伊拉克6 Galgotias工程技术学院,印度大诺伊达,伊斯兰教大学。 摘要。 鉴于当代的社会,生态条件和新颖的风险,需要物理升级和扩大印度不足和负担过负担的电力结构不足和负担过重的电力结构。 ,鉴于客户对增强功率质量的需求增加了,它针对更安全,更灵活和可靠的系统的开发。 本文重点关注新一代智能电网(SG)的特征,重点是高级通信和控制,以创建灵活和自我修复的电源系统。 本文研究了功能,例如故障检测,隔离和功率恢复,以及用于批量传输和分布的复杂QoS。 此处提供的推理为采用动态概率最佳功率流(DSOPF)作为智能电网的重要推动力提供了重大支持。3印度Phagwara的可爱专业大学。4劳埃德法学院,地块号11,知识公园II,大诺伊达,北方邦201312。5伊斯兰大学伊斯兰大学医学技术学院,伊拉克6 Galgotias工程技术学院,印度大诺伊达,伊斯兰教大学。摘要。鉴于当代的社会,生态条件和新颖的风险,需要物理升级和扩大印度不足和负担过负担的电力结构不足和负担过重的电力结构。,鉴于客户对增强功率质量的需求增加了,它针对更安全,更灵活和可靠的系统的开发。本文重点关注新一代智能电网(SG)的特征,重点是高级通信和控制,以创建灵活和自我修复的电源系统。本文研究了功能,例如故障检测,隔离和功率恢复,以及用于批量传输和分布的复杂QoS。此处提供的推理为采用动态概率最佳功率流(DSOPF)作为智能电网的重要推动力提供了重大支持。本文扩展了如何将DSOPF添加到增强的DMS功能可以促进这些设计目标并为渐进的集成电网提供基础。
3哥伦比亚商学院5伊利诺伊理工学院摘要 - 如前所述,就保险公司之间的评估和风险管理而言,ML已成为精算实践的重要工具。通过改进预测模型,精算师可以更好地预测风险,设定适当的价格并做出更好的承保决策。传统的精算实践涉及依赖历史信息和统计公式,但是,当代和大数据需要更好的解决方案。决策树,深度学习的神经网和集成技术,旨在分析大量结构化和非结构化数据的趋势和相关性,这些数据可能很难使用其他技术找到。精算科学中的机器学习涉及在索赔预测,欺诈检测,客户细分和损失建模中使用复杂算法。来自社交媒体,IoT设备和远程信息处理的实时数据具有在馈送ML模型时提供更准确和及时的分析和预测的潜力;这可以提高保险业务和客户满意度的效率(Varney,2019年)。此外,随着使用ML的使用,精算师具有更新模型的能力,并随着时间的流逝而变化的数据和趋势进行必要的更改。尽管如此,精算科学中ML的整合带来了一些挑战。数据质量,模型可解释性以及如何向用户呈现结果。精算的未来在这方面,虽然精算师可以利用复杂算法来开发风险评估的预测模型,但他们还需要确保此类模型是透明的,并遵守设定的法规。因此,本文旨在在精算工作的背景下讨论机器学习方法的机会和局限性,并进一步发展保险风险。
对德国联邦各州的森林管理适应建议的全面文献综述,告知了各种管理方案的发展。ILAND模型是一种基于过程的高分辨率,基于个体的森林模拟器,用于在气候变化下产生详细的森林轨迹和管理影响。iland考虑生理过程,竞争和干扰,模拟了单个树层的森林动态。在代表性的通用景观中进行了模拟,大约对应于生长区域,以产生一组森林指标。此外,ILAND模拟确定了潜在的自然植被,以鉴定适合未来条件的目标物种。模型绩效对德国的BWI(国家森林库存)数据进行了评估。遥感和BWI数据提供了用于森林植被,气候和现场状况的大规模数据集。基于AI的规模(SVD)被用来将模拟到德国所有森林地区的100m分辨率,以通过Iland评估气候和管理场景。SVD利用了对ILAND模拟训练的深神经网络,以在大型空间尺度上有效地投射森林动力学。
示例,[2]和[3]中的作品描述了一个基于功率传递分布因子(PTDF)(请参阅[8,9])的动力学模型,该模型仅允许开始/关闭缩减决策,因此避免了对发电的元素操纵。由于现在可以考虑到传输系统运营商(TSO)的局部削减的可能性,因此本文介绍了一个动态模型,介绍了部分降低可再生能力所需的整个元素。所提出的方法基于PTDF建模框架,并针对使用基于模型的优化技术通过可再生功率部分削减和存储设备来最佳管理亚transmission区域充血状况的可能性。本文的目标是提供一个动力学模型,该模型可靠地描述了系统功能,并且适合基于模型的区域的最佳管理。由于通信约束,仅可用局部描述,并且与剩余网络的连接定义为作用在区域上的扰动。控制一个孤立区的主要挑战是针对该区域边界的全球功率流执行本地控制动作。的确,由于安全性和实际原因,不可能根据整个网络规模的状态测量做出决策。因此,要获得所考虑区域的近距离动力学模型是一个具有挑战性的问题。此外,我们提出了一种面向控制的建模方法。纸张的组织如下。符号:本文的最终目标是验证一个能够考虑传输网络从可再生能源中降低电源的可能性,并使用存储设备来考虑在线优化策略,以考虑电力线约束,控制动作延迟以及由于发电和模型近似而导致的不确定性。第二节介绍了考虑的建模。验证线性化动力学的模拟是在第三节中进行的,同时在第四节中概述了结论。
摘要 — 我们研究海上风电场的最佳能源管理,该风电场结合了“过度种植”(生产量超过输电能力)、“动态热额定值”(DTR,由于输出电缆周围土壤的热惯性大,瞬时输出量超过稳态输电能力)和能量存储(以减轻限电和预测误差)。这种前瞻性的设置旨在进一步降低海上风电的平准化能源成本,它产生了一个具有时间耦合和不确定输入的优化问题。这个能源管理问题的困难在于,由于电缆周围的热惯性,时间常数相差几个数量级。我们提出了一种基于随机动态规划 (SDP) 的大型 GPU 实现的近似解决方案。在我们的性能比较中,SDP 优于更简单的基于规则的能源管理方案,同时我们还探讨了 DTR 在过度种植背景下的好处。索引术语 — 过度种植、动态热额定值、能量存储、最佳能源管理、随机动态规划