粒子数的变化是自然和技术中我们感兴趣的系统最相关的特征之一,这些系统包括与周围环境的能量和物质交换,以及通过反应等内部动力学改变粒子数。这些系统的物理数学建模极具挑战性,主要困难在于自由度数量随时间的变化,以及粒子数量和种类的增加或减少不能违反基本物理定律的附加约束。在这种情况下,理论模型是设计能够提供可靠结果的数值研究计算策略的关键工具。在本文中,我们回顾了受相当不同的具体数值目标启发的粒子数变化的互补物理数学方法。通过分析这些模型的底层共同结构,我们提出了一个适用于一般粒子数变化的动力系统的统一主方程。该方程嵌入了所有先前的模型,并有可能模拟更大范围的复杂系统,从分子到基于社会代理的动态。
原理:由于受激发射,光子在每个步骤中成倍增加,从而产生一束强光子,这些光子是相干的并且沿同一方向运动。因此,光通过受激发射的辐射被放大,称为激光。 活性介质 可以实现粒子数反转的介质称为活性介质。 活性中心 原子被提升到激发态以实现粒子数反转的材料称为活性中心。 1.7 泵浦作用 在介质中实现粒子数反转的过程称为泵浦作用。它是产生激光束的基本要求。 泵浦作用的方法 常用于泵浦作用的方法有: 1. 光泵浦(光子激发) 2. 放电法(电子激发) 3. 直接转换 4. 弹性原子 - 原子间碰撞 1. 光泵浦
摘要 我们研究了光场与一维 (1D) 半无限波导末端附近的原子耦合的三种放大过程。我们考虑了两种设置,其中驱动在三能级原子的裸基或修饰基中引起粒子数反转,以及一种设置,其中放大是由于驱动的两能级原子中的高阶过程引起的。在所有情况下,波导的末端都充当光的镜子。我们发现,与开放波导中的相同设置相比,这以两种方式增强了放大。首先,镜子迫使原子的所有输出都朝一个方向传播,而不是分成两个输出通道。其次,镜子引起的干涉使得能够调整原子中不同跃迁的弛豫速率比,以增加粒子数反转。我们量化了由于这些因素而导致的放大增强,并表明可以在超导量子电路实验中用标准参数证明这一点。
量子隐形传态被认为是许多量子信息处理任务中的基本原语,并已在各种光子和基于物质的装置中得到实验证实。在这里,我们考虑在费米子场模式中编码的量子信息的隐形传态。在费米子系统中,超选择规则导致纠缠和隐形传态的图景更加不同。特别是,人们被迫区分单模纠缠交换和通过贝尔不等式违反进行认证或不进行认证的量子比特隐形传态,正如我们在此处详细讨论的那样。我们重点关注受奇偶校验超选择影响的系统,其中粒子数不固定,并将它们与受粒子数超选择约束的系统进行对比,这些系统与可能的实际实现相关。最后,我们分析了对费米子模式纠缠的操作解释的影响,并研究了所谓的混合最大纠缠态对隐形传态的有用性。
激光:激光原理 – 自发辐射和受激发射 – 爱因斯坦系数 – 粒子数反转和激光作用 – 光学谐振器(定性)- 激光类型 – Nd:YAG、CO 2 激光、GaAs 激光 – 激光的工业和医疗应用;光纤:光纤中光的原理和传播 – 数值孔径和接受角 – 基于材料的光纤类型、折射率分布、传播模式(单模和多模光纤)- 光纤衰减的定性思想 - 光纤的应用 - 光纤通信(示意图)、有源和无源光纤传感器、内窥镜
激光:激光原理 – 自发辐射和受激发射 – 爱因斯坦系数 – 粒子数反转和激光作用 – 光学谐振器(定性) – 激光类型 – Nd:YAG、CO 2 激光、GaAs 激光 – 激光的工业和医疗应用;光纤:光纤中光的原理和传播 – 数值孔径和接受角 – 基于材料的光纤类型、折射率分布、传播模式(单模和多模光纤) – 光纤衰减的定性概念 – 光纤的应用 – 光纤通信(示意图)、有源和无源光纤传感器、内窥镜
激光:激光原理 – 自发辐射和受激发射 – 爱因斯坦系数 – 粒子数反转和激光作用 – 光学谐振器(定性)- 激光类型 – Nd:YAG、CO 2 激光、GaAs 激光 – 激光的工业和医疗应用;光纤:光纤中光的原理和传播 – 数值孔径和接受角 – 基于材料的光纤类型、折射率分布、传播模式(单模和多模光纤)- 光纤衰减的定性思想 - 光纤的应用 - 光纤通信(示意图)、有源和无源光纤传感器、内窥镜
从每毫升的ANJ -DNA-LVV滴度中稳定为“感染性滴度”(TU/mL),“粒子滴度”(LVV粒子数/mL),通过在LVV sibletestrantandsdated(a)中通过RT-QPCR评估的“基因组滴度”(A)。ong-项和估计在变形后第17天进行,并量化了进入Jurkat基因组的LVV(b)。.anjl anj-DNA具有完全功能性,能够稳定地整合到宿主细胞的基因组中。