由于其强度,硬度和耐化学性,环氧粘合剂越来越使用。他们继续存在弊端,但仍然存在,例如较差的热稳定性和不良的电导率。二维石墨烯是一种出色的物质,具有出色的质量,包括高强度,高电导率和较大的表面积。由于这些特征,石墨烯已被彻底重新搜索其在包括电子,能源储能和生物医学工程在内的各种行业中的前瞻性用途。将石墨烯用作环氧粘合剂中的添加剂来增强此类材料的特征是其有前途的用途之一。本文回顾了有关格拉芬对环氧粘合剂的影响的最新发现。讨论了产生杂质 - 环氧复合材料及其改进的各种方法。这项研究还讨论了与石墨烯 - 环氧复合材料的生产和处理相关的挑战,以及机械,电气和热特性改善背后的机制。本评论的最后一部分讨论了将来石墨烯在环氧粘合剂中的挑战和前瞻性用途。
•在沥青生产中使用废料的增加(说唱,玻璃,废物,塑料,磨碎橡胶,碳粉等)•降低生产和压实温度(WMA技术)•减少干燥骨料的能量(覆盖储存量,绝缘,隔热,使用绿色燃料,溶液等)•使用绿色燃料和较高的碳纤维材料,例如使用较低的碳水化合物•使用较低的碳水化合物•使用较低的cody prodbord•hyd-cody bodiber of figner infim infim in coby of coby offor infim infim•使用水分般的粘贴式粘贴式粘贴式粘贴式粘贴式胶水材料•粘合剂•使用回收和回收解决方案,例如基础处理和稳定
用于 MEMS 封装的高柔性芯片粘接粘合剂 Dr. Tobias Königer DELO 工业粘合剂 DELO-Allee 1 86949 Windach,德国 电话 +49 8193 9900-365 传真 +49 8193 9900-5365 电子邮件 tobias.koeniger@delo.de 摘要 大多数 MEMS 封装的芯片粘接材料必须具有高柔性,因为在装配过程和应用过程中的温度变化可能导致热机械应力,这是由于基板、芯片和粘合剂的热膨胀系数不同造成的。热机械应力会导致对应力极为敏感的 MEMS 设备的信号特性失真。在本文中,我们开发了高柔性热固化粘合剂,其杨氏模量在室温下低至 5 MPa (0.725 ksi)。 DMTA 测量表明,在 +120 °C (+248 °F) 温度下储存不会导致粘合剂脆化,而脆化会对 MEMS 封装的可靠性产生负面影响。在 +120 °C (+248 °F) 下储存长达 1000 小时后,杨氏模量没有增加。粘合剂在低至 +100 °C (+212 °F) 的极低温度下固化,从而减少了组装过程中的应力产生。此外,粘合剂具有非常友好的工艺特性。处理时间可以达到一周以上。双重固化选项可在几秒钟内对芯片进行初步光固定。关键词粘合剂、MEMS 封装、应力、芯片粘接、粘合
我们报告了一种通用方法,用于提高软烤 BCB 键合堆栈中键合后晶圆对准精度和 BCB 厚度均匀性。该方法基于新型 BCB 微柱,在键合过程中充当锚点。锚点结构成为键合界面的自然组成部分,因此对键合堆栈的光学、电气和机械性能的干扰最小。我们研究了固定锚点密度和各种锚点高度与粘合剂 BCB 厚度的关系,这些性能也不同。我们证明了对准精度可以提高大约一个数量级,并且该工具可以接近基本的键合前对准精度。我们还证明了该技术对 2 – 16 μ m 的大范围 BCB 厚度都有效。此外,我们观察到,对于 8 – 16 μ m 范围内的 BCB 厚度,厚度不均匀性降低了 2 – 3 倍。
将碳基纳米材料(例如碳纳米管(CNT),碳纳米纤维(CNF)和石墨烯掺入环氧基矩阵中,可以增强裂缝韧性,拉伸强度和热稳定性。这些改进源于纳米颗粒与环氧树脂之间的强烈界面相互作用以及有效的裂纹机制。例如,增加0.1 wt。%单壁CNT的CNT使骨折韧性增加了13%,压缩后强度的强度增加了3.5%[3]。基于硅的纳米材料,例如二氧化硅纳米颗粒和蒙脱石(MMT)纳米粘土,也通过降低空隙含量和增加的刚度来增强环氧性特性。基质中纳米颗粒的均匀分散在实现这些益处方面起着至关重要的作用[4,5]。
摘要:当前的添加剂制造(AM)技术可以使用多种塑料,金属和陶瓷材料制造具有复杂几何形状的零件。目前,集成技术的进步有限,可以在同一部分打印不同的材料。键合零件需要进一步处理;它还创建了与应力浓度令人衰弱的界面。总体而言,零件性能受到损害。因此,在3D打印多物质和功能分级的零件中有值。在这里,报道了一种新型的粘合剂喷射方法,用于单步生产多物质和功能分级的零件。该方法将纳米颗粒墨水沉积在粘合剂中。陶瓷,聚合物或金属粉末必定会构建纳米复合材料。通过在打印过程中切换纳米粒子油墨,该过程构建了具有分级电导率和柔韧性的材料。为了演示该方法,制定了氧化石墨烯(GO)墨水,用于打印到聚乙烯醇(PVOH)粉末上。最终产品是一种GO/PVOH复合材料,具有电导率和高灵活性。该复合材料显示为超级电容器应用的高孔隙率材料。
农业中的霉菌毒素管理是维护动物和人类健康的重要挑战。选择合适的吸附剂仍然是许多饲养者的问题,也是饲料制造商的重要标准。人们仍在寻找新的吸附剂。氧化石墨烯是纳米技术领域一种很有前途的材料,其吸附性能优异。体外研究调查了氧化石墨烯对碎小麦中霉菌毒素的结合。结果表明,在 37˚C 下,氧化石墨烯对黄曲霉毒素 0.045 mg/g、玉米赤霉烯酮 0.53 mg/g 和脱氧雪腐镰刀菌烯醇 1.69 mg/g 的吸附能力。碎小麦消化的体外模拟显示在胃期吸附迅速。在矿物质中,Mg、Cu 和 Zn 的吸附量最多。 10 mg/g 剂量的氧化石墨烯对消化酶 α-淀粉酶和胰蛋白酶的抑制作用与胃蛋白酶和胃脂肪酶相比仅有轻微抑制。体外结果表明氧化石墨烯适合吸附黄曲霉毒素、玉米赤霉烯酮和脱氧雪腐镰刀菌烯醇。
已经开发了三种类型的粘附终端形成技术(发明1,2,3)可以改善序列设计的自由度和DNA连接反应的效率,这对于创建遗传修饰的矢量等是必需的。由于使用了化学技术,只有一端才能成为粘附端或可以与线性DNA链接到线性DNA。
本文讨论了用于储能应用(例如电池)的粘合剂的进度和商业化。它解释了粘合剂在将活性材料和当前收集器汇总在一起的作用,并突出了与粘合剂中常规有机溶剂相关的挑战。水性粘合剂的潜力被引入是一种具有成本效益且环保的替代方案。讨论了不同类型的粘合剂的优点和局限性,并强调了粘合剂选择对最佳电池性能的重要性。审查了粘合剂商业化的现状,并强调了研究人员,制造商和政策制定者之间合作的需求,以开发和促进环保和成本效益的粘合剂。本文结束了结论,概述了未来的研发方向,以进一步改善粘合剂的性能和商业化,同时解决诸如缺乏标准化,高成本以及长期稳定性和可靠性之类的限制。
本文所描述的产品的销售(“产品”)遵守Huntsman Advanced Materady LLC的一般条款和条件,或其适当的会员(包括huntsman Advanced材料(欧洲)BVBA),Huntsman Advanced Americas Inc.或Huntsman Advance Americas Inc.或Huntsman Advanced Materady(Hong Kong)Ltd.(“ Huntsman”)。以下是购买者的文件。猎人保证,在交货时,所有出售给买方的产品均应符合亨斯曼提供给买方的规格。虽然据亨斯曼的知识,本出版物中包含的信息和建议是准确的,截至出版日期,本文中没有任何内容(除了上述关于符合符合亨斯曼提供给买家的规范的符合规格的范围外,都应将其视为任何形式的代表性或保证,包括任何特定的权利,包括任何特定的授权,不限于符合任何权利,而不是限制了任何权利,否则有保证的性能,而不是符合任何权利的权利。或对先前描述或样本的质量或通信的保证,买方承担使用这种产品所产生的所有风险和责任,无论是单独使用还是与其他物质结合使用。此处提出的任何陈述或建议都不得解释为任何产品对购买者或用户的特定应用或侵犯任何专利或其他知识产权的适用性的表示。产品可能是或变得危险。买方有责任确定此类信息和建议的适用性以及任何产品出于其自身目的的适用性,并确保其对产品的预期使用不会侵犯任何知识产权。买方应从亨斯曼那里获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及适当的运输,处理和存储程序,并应遵守所有有关政府法律,法规和标准与处理,使用,使用,存储,分配,分配,分配以及对产品的处理,并遵守所有适用的政府法律,法规和标准。买方还应采取所有必要的步骤,以充分告知,警告和熟悉其员工,代理,直接和间接的客户和承包商,他们可能会处理或暴露于与安全处理,使用,存储,运输,运输和接触产品以及对产品以及产品以及产品的容器或设备的所有危害以及适当的程序以及适当的程序以及适用的产品以及适用的产品,以及该产品的产品,以及该产品的产品或销售的产品。